
NPS62-89-022

NAVAL POSTGRADUATE SCHOOL
Monterey, Californla

L
0 DTIC

I-' ELECTE I

S B

~~THESIS v

CON! OL0COiR()L 01 A\ I-XPI RIINI"
* "1O .!I-,'SLP, ACOLS IC NOISE IN 1lie

SPACE SHIUTTLE

by

(harlcs B. Camerou

June 1989

Thesis Advisor Rudol'l Panholzer

Approved For public release; distribution is unlim1itcd.

Prepared for:

Naval Postgraduate School

Monterey, CA 93943-5000 9 0 01 17 137

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin Dr. Harrison Shull
Superintendent Provost

Reproduction of all or part of this report is authorized.

This report was prepared by:

Charles B. Cameron, LT, USN
Code 39
Naval Postgraduate School
Monterey,'CA 93943-5000

Reviewed by:

JO P. POWERS GORDON E. SCHACHER
Chairman, Department of Dean, Science and
Electrical and Computer Engineering
Engineering

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

Unclassified
security classification of this page

REPORT DOCUMENTATION PAGE
la Report Security Classification Unclassified lb Restrictive Markings

2a Security Classification Authority 3 Distribution Availability of Report
2b Declassification Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)
NPS62-89-022
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (if applicable) 39 Naval Postgraduate School
6c Address (city state, and ZIP code) 7b Address (cit, state, and ZIP code)
Monterey. CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number Unfunded
Naval Postgraduate School (if applicable)
8c Address (city, state, and ZIP code) 10 Source of Funding Numbers
Monterey. CA 93943-5OoO Program Element No Project No ITask No W Work Unit Accession No

I! Title (bicludesecuri. , ,assi/,,aion! CONTROL OF AN EXPERIMENT TO MEASURE ACOUSTIC NOISE IN THE
SPACE SHUTTLE (Unclassified)

12 Personal Authors) Charles B. Cameron
13a T)pe of Report 13b Time Covered I- Date of Report (year. month, day) 15 Page Count
Master's Thesis From To June 1980 255
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-
sition of the Department of Defense or the U.S. Government.
I Cosati Codes 18 Subject Terms, oiinue opi re erse if" ne:esfary ,nd ", ; b n l'liumbe'r 1

Field Group Su gro -- control',Space Shuttle! bubble memory.nmicroprocessor' Get Away Special, autonomous,
C, Z-80 acoustic; matched filter, Auxilia Pdwer Unit. - -

' Abstract (,onfinue on reverse if ne, es,.zry and idenii.,, by blck unilbcrj

This thesis describes the potential use of a general-purpose controller autonomously to measure acoustic vibration in the
Space Shuttle Cargo Bay during launch. The experimental package will be housed in a Shuttle Get Away Special (GAS)
canister.
We have implemented the control functions with software written largely in the C programming language. We use an IBM
MS:DOS computer and C cross-compiler to generate Z-80 assembly language code, assemble and link this code. and then
transfer it to EPROM for use in the experiment's controller. The software is written in a modular fashion to permit adapting
it easily to other applications. The software combines the experimental control functions with a menu-driven, diagiostic
subsystem to ensure that the software will operate in practice as it does in theory and under test.
The experiment uses many peripheral devices controlled by the software described in this thesis. These devices include: a
solid-state data recorder, a bubble memory storage module, a real-time clock, an RS-232C serial interface, a power control
subsystem, a matched filter subsystem to detect activation of the Space Shuttle's auxiliary power units five minutes prior to
launch, a launch detection subsystem based on vibrational and barometric sensors, analog-to-digital converters, and a heater
subsystem. The matched filter desima is discussed in detail in this thesis, and the results of a computer simulation of the
performance of its most critical sub-circuit are presented. 1/

Al

20 Distribution Availability of Abstract 21 Abstract Security Classification
IM unclassified unlimited " same as report C3 DTIC users Unclassified
22a Name of Responsible Individual 22b Telephone (include Area code) 22c Office Symbol
Rudolf Panholzer (408) 646-2154 72Pz

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted security classification of this page
All other editions are obsolete

Unclassified

Approved for public release; distribution is unlimited.

Control of an Experiment
to Measure Acoustic Noise in the

Space Shuttle

by

Charles B, Cameron
Lieutenant, United States Navy

B. Sc., University of Toronto, 1977

Submitted in partial fulfillment of the
requirements for the degrees of

MASTER OF SCIENCE IN ELECTRICAL LNGINLERING
and

ELECI RICAL ENGINEER

from the

NAVAL POSTG RAID)UATE SC OOL
June 1989

Author:B
Charles B. Cameron

Approved by: .'I pL-1ft,/,,.o .. so

RLudolf'Panho4T iAdvisor

Steven L. Ga/ tt, Second Reader

John P. Powers, Chairman,

Department of Computer and Electrical Engineering

Gordon E. Schacher,
Dean of Science and Engineering

ii

ABSTRACT

This thesis describes the potential use of a general-purpose controller autonomously

to measure acoustic vibration in the Space Shuttle Cargo Bay during launch. The ex-
perimental package will be housed in a Shuttle Get Away Special (GAS) canister.

We have implemented the control functions with software written largely in the C

programming language. We use an IBM MS-DOS computer and C cross-compiler to

generate Z-80 assembly language code, assemble and link this code, and then transfer it

to EPROM for use in the experiment's controller. The software is written in a modular

fashion to permit adapting it easily to other applications. The software combines the
experimental control functions with a menu-driven. diagnostic subsystem to ensure that

the software will operate in practice as it does in theory and under test.

The experiment uses many peripheral devices controlled by the software described

in this thesis. These devices include: a solid-state data recorder. a bubble memory

storage module, a real-time clock, an RS-232C serial interface, a power control subsys-
tem, a matched filter subsystem to detect activation of the Space Shuttle's auxiliary

power units five minutes prior to launch, a launch detection sLubsystem based on

vibrational and barometric sensors. analog-to-digital converters, and a heater subsystem.

The matched filter design is discussed in detail in this thesis, and the results of a com-
puter simulation of the performance of its most critical sub-circuit are presented.

Accession For

NTIS GRA&I
DTIC TAB 0
Unannouniced 0
Justlfiation

Ditstribut ion/
Availability Codes

Avail and/or

0 Dist Specia

#4 L

TABLE OF CONTENTS

1. INTRODUCTION ... 1

A. GET AWAY SPECIAL (GAS).................................

B. THE VIBRO-ACOUSTIC EXPERIMENT..........................2
C. DIFFERENCES FROM EARLIER EFFORTS......................2

1. Isolation of Microphones...................................2

2. Solid State Data Recorder (SSDR) Using Bubble Memory 3

3. Microprocessor Control of the Experiment.......................3

D. PROCEDURAL OUTLINE OF THE VIBRO-ACOUSTIC EXPERIMENT 4

1. Sweep Phase .. 4

2. Detection of the Auxiliary Power Units (APUs)....................4

3. Scroll Phase.. 5

4. Launch Phase... 5

5~. Post-launch Operations 6

6. Abridged Experiment.......................................6

E. IRREGULARITIES .. 7

F. OTHER APPLICATIONS.....................................S

11. CONTROL HARDWARE............................... I....... 10

A. STANDARD CONTROLLER.................................10

I. NSCS1OA RAM-I 0-Timers................................10
2. On-board Analog-to-digital Converter..........................1 2

3.Bubble Memory Myodule for the Controller...................... 12

4. Real Time Clock ... 13

5. RS-232C Serial Input Output Port............................13

B. ADDITIONAL CONTROLLER HARDWARE....................14

1. Analog-to-digital Converter Subsystems........................ 14

2. Solid State Data Recorder (SSDR)............................14

3. Matched Filter... 16

4. Voltage Controlled Oscillator (VCO)...........................17

5. Vibration- activated Launch Detector 17

6. Barometric pressure switches................................18

i'.

7. Heater Circuit..19
8. Power Control Subsystem..................................19

Ill. THE MATCHED FILTER.....................................21
A. MICROPHONE INPUT STAGE...............................21
B. HIGH-PASS FILTER.......................................22
C. PRE-AMPLIFIER... 23
D. FOURTH-ORDER, ELLIPTICAL (CAUER), BANDPASS FILTER 23
E. ADJUSTABLE GAIN.......................................32
F. FULL-WAVE RECTIFIER...................................32
G. LOW-PASS FILTER.......................................3. 4
H. THRESHOLD DETECTOR...................................38
I. RESETTABLE PULSE COUNTER 38
J. PULSE GENERATOR.......................................40
K. SUM.MARY ... 42

IV. DESIGN OF THE CONTROL SOFTWARE 43
A. MIEMORY MIAP.. 43
B. OPERA-TION OF THE VIBRO-ACOUSTIC EXPERIMENT........... 45

I. Menui-driven Diagnostic Program.............................4 5
2. Performning the Experiment.................................46

a. Microprocessor Control Program..........................46
b. Initialize Hlardware....................................47

c. Run the Vibro-acoustic Expcriment........................47

d. Initialize Softwvare.....................................4S
e. Do Sweep..49
f. Start Recording Response at Known Frequencies.............. 51
g. Stop Recording Response at Known Frequencies.............. 51
h. Wait for APUs to Start or for Launch Indications............. 53
i. Do Scroll.. 53
j. Abort ... 54
k. Do Launch...54

1. Check for a Completed Launch 55
m. Do Post-launch...................................... 57
n. Monitor Heater Subsystem Operation...................... 57

V

o. D o R ecord ... 57

V. HOW TO GET THE EXPERIMENT READY FOR A LAUNCH 63

A. UNABRIDGED EXPERIMENT 63

B. ABRIDGED EXPERIMENT 64

C. BOTH VERSIONS OF THE EXPERIMENT 64

VI. TESTING OF THE SOFTWARE 65

VII. CON CLUSIO N S .. 68

APPENDIX A. DERIVATION OF DESIGN EQUATIONS FOR THE

M A TCH ED FILTER ... 72

A. BIQUADRATIC FILTERS USING IWO OPER-NTIONAL AMPLIFIERS 72

B. HIGH-PASS NOTCH FILTER 76

C. LOW -PASS NOTCH FILTER

D. A SECOND-ORDER. LOW-PASS FILTER USING ONLY ONE OP1ER-

ATIONAL AM PLIFIER .. SO

APPENDIXB. CIIOICE OF A SOFTWARE DEVELOPMENT SYSTEM 83

A. Z-80 ASSEMBLY LANGUAGE S3

B. CP, M AND TOOLW ORKS C 83

C. MS DOS AND UN1WARE C 84

D. GENERATION OF FIRMWARE IN EPROM 85

APPENDIX C. HOW THE UNIWARE SOFTWARE USES TILE COMPUTER

M E M O R Y 86

APPENDIX D. HIERARCHICAL ORGANIZATION OF SOFTWARE FILES 88

A. SUBDIRECTORY \VIBRO\CONTRLR\HEADERS 88

B. SUBDIRECTORY \VIBRO\CONTRLR\CSOURCE 88

C. SUBDIRECTORY \VIBRO\CONTRLR\ASMSOURC 88

D. SUBDIRECTORY \VIBRO\CONTRLR\BATCH 88

E. SUBDIRECTORY \VIBRO\CONTRLR\LIST 89

F. SUBDIRECTORY \VIBRO\CONTRLR\OBJECT 89

vi

APPENDIX E. SUBROUTINES, IN ALPHABETICAL ORDER BY NAME .. 91

APPENDIX F. SUBROUTINES, IN ALPHABETICAL ORDER WITHIN

EACH MODULE...99

APPENDIX G. CONTROL PROGRAM DOCUMENTATION............ 107

A. MAJOR SUBROUTINES AND FUNCTIONS.................... 108

1. main()... 108
2. void inithardware(void)...................................109

3. char checkprt(void) 111I
4. void shut-down-no-log(void)..............................111I

5. char menu(char experiment_flag) 1III
6. void version(void)...................................... 113
7. void rtc(void) .. I11

S. void clockread(struct datetime *,,our_clock) 114
9. void dumip clock(struct datetinie : clock)....................... 114

10. void clockset(struct datetiine ' clock)......................... 114

11. void testtimecout(%void)...................................114

12. void pwrcnit(void)......................................115
13. void bubmenu(void)....................................115

14. char bub_on(%-oid) 116

15. void bubofvoid)......................................116
16. char bubinit(void)......................................116
17. void bubcmdmenu(void)..................................117

18. void testpattern(char buffier[1)......................... 117
19. void showbubbufiar buffert], char mode)................... 117

20. char bubio(char command, mnt page, char *buffer)............... 118
21. void rdstatreg(void) 118
22. void expmnt(void) 118

B. SUPPORTING SUBROUTINES AND FUNCTIONS............... 121

I. File bubblexc..1211
a. void bpageset(int page)................................121
b. char issububcmd(char command).........................124

2. File bubrw.s.. 125
a. char bubxfer(void)...................................125

vii

b. char bubread(char *buffer) 125

c. char bubwrite(char *buffer) 125

3. File clock.c .. 126

a. void clockint(struct datetime *clock, struct idatetime *iclock) ... 126

b. char clockcompare(struct idatetime *clockl, struct idatetime
*clock2) 126

c. void clocksum(struct idatetime *result, struct idatetime *clocki,

struct idatetim e *clock2) .. 126

d. void show waketime(struct idatetime *waketime) 127

e. void dumpiclock(struct idatetime *clock) 127

f. void gettime(struct idatetime *clock) 127

g. void showwaketime(struct idatetime *waketime) 127

h. char timeout(int delaytime. int measure) 127

4. F ile convert.c .. 128

a. char atoh(char *ascii) 128

b. unsigned int atohexint(char ascii[]) 12S

c. int atoi(char *s) 123

d. char *bcdasc(char bcd) 129

e. int bcdint(char bcd) 129

t: char *ctoh(char byte) 129

g. char int_bcd(int decim al) 129

h. char *itoa(int n. char[1) 129

i. char tolow er(int c) 130
j. char *uitoh(unsigned int word) 130

5. F ile delay .s . 1 O

a. void delay(int n) 130

6. File expmnt.c .. 130
a. char ad read(char port) 130

b. int adtoint(char addata, unsigned long multipier) 130

c. void alter pageO(struct pageOdata * pagezero) 131

d. char badidea to_rccord(char show) 132

e. void displaypageO(struct pageOdata * pagezero) 132

f. void dosweep(void) 132

g. char initialize(void) 133

h. char listen(void) 133

viii

i. char logevent(char event)...............................133
j. void log menu(void)..................................134
k. void monitor -heaters(void)............................. 134
1. void post_launch(void)................................135

m. void record(void)....................................135
n. void short experiment(void) 135

o. void show-event(char event)............................ 136
p. void shut -down(void).................................136
q. char ssdrmode(char mode).............................136
r. char ssdr-status(void).................................137
s. char voltagesjlow(void)................................137
t. char wve-launclied(void)................................1347

7. File fputC.c ... 137
a. mnt f'putc(int chr. void *~device)...........................137

S. File P-lobal.c ... 138)
9. File inout-c .. 138

a. vod allow ctrl interrupts(void)..........................1 IS
b. void durnp(unsigned mnt address. unIsigned mt length).......... I "S
c. char gethex(void)....................................138

d. unsigned mnt gethexint(void. 138
e. int se tint(void) 139
f. mnt g-etpageno(void) 139
g. char look-ahead(char *character)......................... 139

h. char tcrmin(void) 13'9
i. void te Stillput(vo id...................................1.40
j. void testoutput(void)..................................140

10. File main.c ... 140

a. void memo ry-dump(v oid).............................. 140

b. void testio(void).....................................140
11. File mbrk.s............................. 141

a. char *mbrk(loflg size, long *realsize).................... .. 141

12. File newio.s..141

a. char input(char port).................................141
b. void output(char port, char data).........................141

13. File power.c..1-41

ix

a. void power status(void).141
b. char power write(char command) 141

14. File start.s...142
C. PROGRAM MAINTENANCE........................ 145

1. Procedures for Generating a New Executable Program 145
a. Compile the C source files..............................145
b. Assemble the Assembly Code Source Files.................. 145
c. Link Modules Together................................145

2. Getting the Executable Program into EPROM.................. 146

a. Copy the Executable Program to a Diskette................. 146
b. Prepare to Write EPRONMs............................. 146

APPENDIX H. CONTROL PROGRAM% SOURCE CODE................I1SO5
A. FILENAME SPEC ... 150
B. 17ILENAME VERSION.H....................................150

C. FILENA\ME VERSION.C....................................151
D. FILENAME VIBRO.H.....................................1 51I
E. FILEN.ANE BUBBLE.H.....................................158
F. FILENAME BUBBLE.C.....................................1;8
G. FILENAME BUBRW.H. 165
H1. FILENAMIE BUBRW.-S.....................................165

I. FILENAME CLOCK.H......................................170
J. FILENAMIE CLOCK.C......................................170

K. FILENAME CONVERT.H...................................177
L. I IL ENAMlE CO0N VE RT. C...................................17 7

%I. FILENAMIE DELAY.H.....................................I1I
N. FILENAME DELAY.S.....................................181
0. FILENAME EXPMNT.H....................................182

P. FILENAME EXP.MNT.C....................................182
Q. FILENAME FPUTC.C.....................................199

R. FILENAM*vE GLOBAL.H...................................200
S. FILENAME GLOBAL.C....................................200

T. FILENAME INITIAL.H.................................... 21
U. FILENAME INITIAL.C....................................20 1
V. FILENAME INOLUT.1I.....................................203

X

WV. FILENAME INOUT.C.....................................203
X. FILENAME MAIN.1-......................................210
Y. FILENAME MAIN.C......................................210
Z. FILENAMtvE.MBRK.S......................................213

AA. FILENAME NEWIO.H....................................214
AB. FILENAME NEWIO.S....................................214
AC. FILENAME POWER.H....................................215

AD. FILENAME POWER.C....................................215
AE. FILENAME START.S.....................................217
AF. FILENAME ASM.BAT...................................2. .20
AG. FILENA-ME ASMLIST.BAT 220-)

All1. FILENAME C.BAT......................................220
Al. FILENAM*vE LINK.BA-T 22 1
AJ. FILENAMIE LIST.BAT....................................221

AK. FILENA.ME LOADM,/AP.BAT..............................221l
AL. FILENAME PRINTALL.BAT 2.-1
AM. FILENAME PRO\ILINK.BAT 223

N.FILENAME PRO'MOUT.BAT...............................223
AO. FILENAME PRONISYM.BAT...............................2 23
AP. FILENAMIE READYOUT.BAT 223

APPENDIX I. RS-232C INTERFACE PIN CONNECTIONS.............. 224

LIST OF REFERENCES .. 229

INITIAL DISTRIBUTION LIST....................................231

LIST OF TABLES

Table 1. ASSIGNMENT OF BITS IN THE RS-232C SERIAL INTERFACE

P O R T 14
Table 2. BIT ASSIGNMENTS FOR READING POWER SUBSYSTEM RELAY

SETT IN G S ... 15
Table 3. BIT ASSIGNMENTS FOR CONTROLLING POWER SUBSYSTEM

R E LA Y S ... 16
Table 4. SSDR COMMAND CODES 17
Table 5. SSDR STATUS CODES 17
Table 6. BIT ASSIGNMENTS IN PORT C, OF NSC810A -- 18

Table 7. BIT ASSIGNMENTS IN PORT C2 OF NSCSIOA -2.............. 19
Table S. SUBROUTINE INDEX 91

Table 9. M S DOS FILE INDEX 99
Table 10. BIT ASSIGNMENTS FOR THE BUBBLE MEMORY CONTROLLER

(BYIC) STATUS BYTE 119

Table H1. CONTENTS OF THE PARA.METRIC REGISTERS IN THE BUBBLE

MEMORY CONTROLLER 122
Table 12. CONTENTS OF SUBDIRECTORY \VIBRO\CONTRLR\BATCH .. 143
Table 13. CONTENTS OF SUBDIRECTORY \VIBRO\CONTRLR\CSOURCE 146
Table 14. CONTENTS OF SUBDIRECTORY

\VIBRO\CONTRLR\ASMSOURC 147

Table 15. CONTENTS OF SUBDIRECTORY \VIBRO\CONTRLR\HEADERS 148

Table 16. RS-232C INTERFACE PIN CONNECTIONS 24
Table 17. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED) 225
Table 18. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED) 226

Table 19. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED) 227
Table 20. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED) 228

xu

LIST OF FIGURES

Figure 1. Block diagram of major components of the Vibro-acoustic Experiment. 11
Figure 2. Block diagram of the Matched Filter 22
Figure 3. The microphone input stage 23
Figure 4. High-pass filter ... 24
Figure 5. Pre-amplifier . .. 25
Figure 6. Magnitude of the transfer function of the elliptical bandpass filter 26
Figure 7. A generalized biquadratic filter using two operational amplifiers 27

Figure 8. A fourth-order, elliptic bandpass filter with Q = 12 2S
Figure 9. N otch filters .. 29
Figure 10. Frequency response of the simulated bandpass filter 32

Figure 11. Amplifier providing a variable voltage gain up to 28 = 28.9 dB 33
Figure 1 2. Full-wave rectifier 34

Figure 13. A general second-order, single operational amplifier, low-pass filter. . .. 35
Figure 14. Second-order, low-pass filter 36

Figure 15. Threshold detector 38
Figure 16. Resettable Pulse Counter39
Figure 17. Astable operation of the LM555 Timer to generate a pulse train 40
Figure IS. Pulse Generator .. 41
Figure 19. Memory map of the computer 44
Figure 20. Flow chart 0 .. 48
Figure 21. Flow chart I .. 49
Figure 22. Flow chart 2 .. 50

Figure 23. Flowchart 2.1 ... 51
Figure 24. Flowchart 2.2 ... 52
Figure 25. Flowchart 2.2.2 .. 53
Figure 26. Flowchart 2.2.4 .. 54
Figure 27. Flowchart 2.3 ... 55
Figure 28. Flowchart 2.4 ... 56
Figure 29. Flowchart 2.4.4 .. 57
Figure 30. Flow chart 2.5 ... 5S
Figure 31. Flow chart 2.5.3 .. 59

xii

Figure 32. Flowchart 2.6.. 60
Figure 33. Flowchart 2.6.3 .. 61

Figure 34. Flowchart 2.7.. 62
Figure 35. Hierarchical Organization of Software Files......................89

xiv

GLOSSARY

Analog-to-digital (A/D) Converter: Analog signals are signals whose levels vary con-
tinuously as a function of time. Digital signals are signals which take on discrete
(quantized) values, and these values remain constant for some given period of time,
at which time the level is updated. An analog-to-digital converter samples a contin-
uous input signal, decides which of a finite set of discrete values is the best one to de-
scribe the input signal. and outputs that discrete value. A regular clock is used to
cause the input to be sampled again on a repetitive basis, and the output likewise is
updated at the same rate. A digital computer cannot deal with continuous signal lev-
els, so A D converters are routinely used to let such computers read signal levels in the
form they can handle, as digital values.

Auxiliary Poser Unit (APU): The APUs are jet-turbine-powered engines used during
both launch and recovery to operate the control surfaces of the space shuttle. Because
they have a limited amount of fuel. the mission will be scrubbed if' they operate for
more than seven minutes before launch. The Vibro-acoustic Experiment attempts to
detect them. If it is successful in doing so, it can anticipate launch.

ASCII: American Standard Code for Information Interchange. This is a seven-bit
data code used in many digital systems to represent alphabetic and numeric characters,
punctuation marks and a number of non-printing characters comnonly used to pass
information from one device to another. Since most di2ital systems are based on
eight-bit bytes. one bit. the high-order one, is unused in the ASCII scheme. It is not
uncommon for manufacturers to appropriate the extra bit for their own purposes.

BAUD: The baud rate is the number of symbols transmitted in one second. In many
computer systems, one symbol can represent one bit (zero or one) and so the baud rate
and the bit rate are equal.

BCD: Binary Coded Decimal. In this format, two four-bit codes are stored in a single
eight-bit byte. Each of these four-bit codes can take on any of ten values from OxO
through 0x9. Values from Oxa through Oxf are forbidden. The interpretation of these
four-bit codes is that they represent the decimal digits from 0 through 9. Thus. a single
eight-bit byte can represent decimal numbers from 0 through 99. This format is the
only one used by the National Semiconductor MM58167A real time clock.

Bubble Memory: This is a form of integrated circuit memory which uses magnetic
domains for storing information. These domains look like bubbles when viewed under
a microscope, hence the name. Applying magnetic fields to the bubbles causes them
to move about, permitting the information they represent to be stored and retrieved.
From the standpoint of a user, they generally have two chief characteristics:

1. The data are stored in a combination of random and sequential methods. Thus
groups of data can be accessed randomly, but the elements of the group must be
accessed sequentially. This is analogous to the way a disk storage device oper-
ates. It accesses tracks directly, by moving its read-write head radially over the
disk's surface to one of a set of concentric circles, called tracks. Once the head
is positioned over the desired track, data is sequentially read from or written to
it.

,\"

2. The data they contain are non-volatile. Removing power from them does not
destroy their contents, provided this is done in a controlled manner. This is in
contrast to the destruction of data in typical integrated circuit memories when
power is removed from them. Those memories are non-volatile only if a battery
backup is available. The Intel bubble memory we are using will lose data if the
temperature wanders outside the range [- 20, + 751°C [Ref. 1: Chapter 1, p.31.

Digital-to-analog (D/A) converters: See the earlier discussion of analog-to-digital con-
verters for some background on the difference between analog and digital signals. The
purpose of the digital-to-analog converter is to convert a digital signal to a smoothly
varying continuous signal. Since the digital signal actually varies in jumps. it is not
smooth to begin with. D'A converters use low-pass filters to eliminate the high-
frequency components represented by the sudden jumps of a digital signal.

Dynamic: In the C programming language, most variables are dynamic. This means
that they are created when a C function commences executing and are destroyed when
that function completes executing. This is in contrast to the way static (q.r.) variables
work.

EEPROM: Electrically erasable, programmable ROM (q.x.). The contents of
EEPROMs are not as easily modified as are the contents of RAMs. but they are
non-volatile (they don't lose their contents when power is removed.) The contents of
these memories can be erased electrically, but generally at a much slower rate than
that at which they can be read.

EPROM: Erasable. programmable ROI (q.r.). EPRO.Is can be erased for re-use
if they are exposed to ultraviolet light for several minutes. It is usual to remove the
integrated circuit from the circuit board to do this. EPRONIs have a limited lifetime
due to wear on the pins (unless zero-insertion-force sockets are used) and because their
ability to be erased diminishes with age.

Executable Program Module: The output of the link process (q.v.) is a single file of
machine code instructions. When placed in the computer's memory at the correct lo-
cations (specified in advance), these instructions permit the computer to execute a
program.

FIFO: First-in, first-out. This term refers to a common data structure. One place
this data structure is used is in the butTer on the bubble memory controller. That
bul'cr serves as an intermediate storage area between the bubble memory and the user.
For example, when data are being read from the bubble memory by the user, they are
retrieved from the bubble memory by the bubble memory controller and placed in the
FIFO buffer. Concurrently, data are being removed from the buffer and sent to the
user. The first characters of information to arrive in the buffer are the first to leave,
hence the first in are the first out.

Firmiare: This term describes the computer programs which are stored in non-
volatile memory, such as ROM (q.v.)

Handshaking: When two devices communicate, they employ a protocol which speci-
fies which device does what, when. This protocol is referred to as "handshaking".

Hexadecimal: Numbers to the base 16. It is customary to use the usual digits (0-9)
as well as the letters 'A' (or 'a') through 'F' (or 'f), for the 16 distinct symbols required
in this system. The C programming language by convention uses the prefix 'OX' (or

xvi

'Ox') to make it clear that the appended characters represent a hexadecimal quantity.
For example.

2a,6-aOx2a- 216 X161 + a 16 x 160 -_2 x 161 + 10 x 160° -- 42.

Input/Output space: The Z-80 and the essentially similar NSC800 provide a separate
set of addresses for input and output devices. Certain instructions are reserved for
these addresses, which can run from OxO0 through Oxff. They do not interfere with the
corresponding memory address space (q.v.)

1/O: Input or output.

I/0 Space: See Input/Output Space.

Latch up: A comparator will ordinarily produce a high voltage when the non-
inverting input receives a higher voltage than that present on the inverting input.
Sirmilarly, it will ordinarily produce a low voltage when the non-inverting input re-
ceives a lower voltage than that present on the inverting input. Some comparators
are susceptible to the phenomenon called "latch up". This entails a failure of the
comparator to change its output according to the usual rules. Instead. the output
signal will remain stuck at one value without regard to changes at the input. This
feature is highly undesirable, as it means that the comparator is no longer performing
as it should.

Library: The output of the compilation or assembly steps is an object module. Se-
veral of these can be stored in a library for convenience. During the link process. the
linker can look in the modules stored in the library for definitions of objects whose
names it does not recognize. The alternative to putting modules in a library is to
specify them individually to the linker, which is somewhat less convenient.

Linker: The linker is responsible for combining the object modules which comprise
a complete program, and placing them in suitable memory locations. Object modules
may include references to other modules or identifiers defined within other modules.
These references must ultimately be resolved to memory addresses within the com-
puter which will run the executable program. It is the job of the linker to perform this
address resolution. To link a program is to request the linker to construct an execut-
able program. and res.Ave all unknown addresses. The object modules may be ob-
tained by the linker from either of two sources: from a library or from individual files
containing only one module each. The output from the linker is a single file contain-
in an executable program module (q.r.)

Memory address space: The Z-80 and the essentially similar NSC800 permit address-
ing memory wi h addresses in the range OxOOOO through OxfftT. Most instructions
which use addresses, including stack instructions which do not explicitly address
memory, use this space. There is another space of addresses called the input output
space (q. v.)

Module: In the C programming language, many functions may be grouped together
in a single file of source code. These are considered to comprise a single module, for
they are compiled as a unit and the resultant object code is stored in a single file. an
object module 'q.v.). Similar remarks hold when the source code consists of assembly
language instructions, rather than instructions in the C programming language. In-
deed, this concept is applicable irrespective of the programming language used to cre-
ate the executable program. There are several advantages to building modules in this
fashion. Chief among them is the separation of sections of a program according to

xvii

their functional characteristics. This permits testing one module independent of test-
ing any other module. It also facilitates the use of fully debugged programs for other
applications at a later date.

Modulo: Consider a number x and another number m, called a modulus. The number
x taken modulo m is written x mod m and it is defined to be the least positive number
n such that x = k x m + n for some integer k. As an example, 5 mod 6 = 5 because
0x 6+5=5. Similarly, 9mod6=3 because 9=1 x6+3, and -2mod6=4 since
-2 = -1 x 6 + 4. Although we can also write -2 = -2 x 6 + 10, -2 mod 6 1 10 be-
cause 10 is not the least positive number which can be found to satisfy the equation.

Nibble: A nibble is a half byte. This is a typical example of humor in the compmer
business.

NSC81OA: An integrated circuit from National Semiconductor which includes two
eight-bit ports, one six-bit port, 128 eight-bit words of RAM (q.v.) and two 16-bit bi-
nary timers.

Object Module: An almost-executable computer program. The reason it is not fully
executable is that not all addresses within it have been resolved yet. nor has the linker
established what addresses should be assigned to relocatable programs. Assemblers
and compilers produce object modules. Linkers convert them into executable form
by resolving the unresolved addresses and assigning all relocatable code to its final
location.

Parametric Registers: The Intel BPK 5V75A Four-Mlegabit Bubble Memory includes
five parametric registers which must be loaded prior to attempting to perform input
from or output to the bubble memory. Two of' the five comprise the block length
register. which defines both the number of bytes contained in a page of bubble mem-
orv (e.g., 64), and the number of pages to be transferred from bubble memory to the
bubble memory port or vice versa at a time. Two more specify at which of the 8.192
pages in the bubble memory to start the transfer of data. The last, the "enable" reg-
ister. primarily defines whether operation is to be interrupt-driven or not.

Project G-313: This is the designation of the NASA project comprising the Vibro-
acoustic Experiment.

PROM: Programmable ROM (q.v.) These ROMs can be written to once by the user,
but once written, their contents can never be modified.

Quotation Marks: In C, double quotation marks (" ") are used to enclose character
strings. Internally, the C compiler always places an ASCII NUL character (its
hexadecimal representation is OxOO) at the end of a string. Single quotation marks
(* ") are used to enclose a single character. Internally, the C compiler does not append
an ASCII OxOO to a single character.

RAM: Random access memory. This refers primarily to memory which can be writ-
ten to and read from repeatedly. It commonly is volatile, i.e., its contents are de-
stroyed when power is removed.

ROM: Read-only memory. This term is a bit of a misnomer. Obviously a memory
which can never be written to would be of little value. Generally, it is much more
diflicult to modify the contents of a ROM than it is to modify the contents of a RAM.

RO., s come in several varieties:

xviii

1. A mask-programmed ROM receives its data at the factory according to a

customer's specification when it is manufactured.

2. A PROM (q.v.) is programmed once by the user.

3. An EPROM (q.v.) can be programmed repeatedly, but must be erased by ultra-
violet light between uses.

4. An EEPROM (q.v.) also can be programmed repeatedly, but it can be erased
electrically.

RS-232C Serial Interface: This interface is also known as the EIA standard interface
It was developed in 1969 by the Electronic Industries Association in conjunction with
the Bell system, as well as independent manufacturers of computers and modems.
Data are transmitted serially using two voltage levels. + V. represents a binary 0;
- V. represents a binary 1.

The voltage V, can lie within the range [3.25]V. While the RS-232C defines the
electrical characteristics of the interface, the functional description of the interchange
circuits, and lists standard applications, it is silent on the subject of physical connec-
tors. Usually. however, DB-25 connectors having 25 pins are used. The tables in
APPENDIX I. RS-232C INTERFACE PIN CONNECTIONS on page 221 show
the pin connections for the RS-232C interface. [Ref. 2: p. 683]

SSDR: Solid State Data Recorder. This device stores audio data in magnetic bubble
memories. It accepts commands analogous to those selected by pushing a button on
a conventional, reel-to-reel tape recorder. For example. the conunands PLAY and
RECORD exist. However, access to the data can be random.

Static: In C. most variables are dinamic (q.v.) They can be made static by the inclu-
sion of this keyword in their declarations. This causes them to become permanent.
They are not then created when the function in which they are declared starts to exe-
cute. They are created at the time of compilation. They do not lose their contents
when that function's operation ends. The contents of the storage locations assigned
to them remain intact until the next time that function tries to access that variable.

UART (Universal Asynchronous Receiver-Transmitter): A common integrated circuit
which provides asynchronous communications between two hardware devices. We use
it to implement an RS-232C serial interface between the controller hardware and a
terminal.
Volatile Memory Storage: Conventional RAM (q.v.) loses its contents when power is
removed. This property is called volatility. By contrast, magnetic core and bubble
memories are non-volatile. For that matter, printed pages are also non-volatile
memories.
Voltage Controlled Oscillator (VCO): The VCO operates a loudspeaker in the exper-
iment during the sweep phase. The frequencies are increased incrementally between
35 Hz and 785 Hz in 1 Hz increments.

.xix

ACKNOWLEDG EM ENTS

This thesis would never have been written without the steady support and encour-
agement given me from the very beginning by my wife, Diane. For this I am forever
indebted to her. I must also give special thanks to Professor Rudy Panholzer, who
guided my efforts from the beginning; Professor Steve Garrett, for teaching me about
analog electronics; Mr. David Rigmaiden, for tireless advice on technical matters; CPT
Frank Mazur, USMC, for taking me under his wing at the start of my involvement in
the project: CAPT Ron Byrnes. USA, without whose patient and calm help the bubble
memory still would not be working properly; Mr. Larry Frazier. whose vast knowledge
of Script. GNIL. and GThesis, and continual willingness to answer any and all questions

about them. were of enormous help to me; Dr. Otto Heinz for his guidance throughout
my course of studyv; CDR Steve Hannifin. USN, and CDR Skip Braden, USN. my for-
mer Commanding Officers, who stood by me when I needed them: and last. but far from
least, to the United States Navy and the people of the United States of America for
permitting me the great privilege of studying at the Naval Postgraduate School.

xx

I. INTRODUCTION

Since it began flying into space in April, 1981 the Space Shuttle has made it much

easier to get payloads into space. Although the shuttle was grounded because of the
tragic explosion of the Challenger on January 28, 1986, flights resumed in October, 1988.

A. GET AWAY SPECIAL (GAS)
In 1976 the National Aeronautics and Space Administration (NASA) established the

Get Away Special (GAS) program [Ref. 3: p. 1]. The purpose of this program is to

permit individual experimenters to have room on the Space Shuttle for their experiments,

provided there is no undue interference with the rest of the mission as a result. To pre-

clude such interference. NASA therefore imposes a number of constraints on these ex-

periments. Among these are

1. They must contain their own power source, heating. data handling facilities, and
so on [Ref. 4: p.8].

2. No more than three external switches may be provided for operation by crew
members. Of these, one must be devoted to removing all power from the payload
[Ref. 4: p. 28].

The Space Shuttle is subject to powerful acoustic vibrations during launch. In the

past, minor breakage of crystals and circuit boards has resulted [Ref. 3: p. I1]. It is

thought that the vibrations are responsible for this damage, and that some regions of the

cargo bay are more susceptible to damage than others. Acoustical analysis of the sound

waves which cause these vibrations could reveal where the best and worst locations are.

Several early GAS experiments carried conventional reel-to-reel tape recorders and

were intended to record the acoustic waves in the cargo bay for subsequent analysis.

However, the analysis was flawed for several reasons [Ref. 5: p. 15]. Among these were:

1. The microphones were mounted close to the bulkhead of the cargo bay, within a
partial enclosure. Thus the data might have been erroneous.

2. The data recorded by the microphone may have been contaminated by interaction
between the microphone and its isolation system.

3. The acoustical waves in the forward third of the cargo bay were not recorded.

Furthermore, astronauts were too busy at launch time personally to initiate the exper-

iments Instead, the experiments included circuitry to detect the roar of the main engines

and trigger the commencement of the experiment [Ref. 6: p. 11]. There is good reason

to doubt the validity of the analysis of acoustic waves whose collection was itself trig-

gered by the occurrence of those same waves. As a result of all these factors, the anal-

ysis so far has been ambiguous.

B. THE VIBRO-ACOUSTIC EXPERIMENT

The Space Systems Academic Group at the Naval Postgraduate School plans to

conduct an experiment as NASA project G-313 to obtain improved acoustical meas-

urements in the cargo bay of the Space Shuttle during launch. In the remainder of this

thesis, we shall refer to this project as the Vibro-acoustic Experiment. The reader is re-
ferred to [Ref. 7] for a general overview of the experiment.

The purpose of this thesis is to describe the software and some of the hardware

which controls the Vibro-acoustic Experiment. At times this thesis will merely describe
the work we have done. At other times, it will prescribe what to do to achieve various

ends. Thus it will serve not merely as documentation of what has been done. but it will

also serve as a manual for those who might wish to elaborate on this earlier work.

The majority of the work performed by the author had to do merely with the control

of the experiment. However, the matched filter (described in Chapter III. THE

.MATCHED FILTER on page 21) was redesigned by the author and is completely de-

scribed in this thesis.

A great deal of the hardware and software created to control the Vibro-acoustic

experiment is very general in nature, and would apply without change to other exper-

iments. We will attempt to indicate which components have general applicability. The

hope is that future applications will benefit from this approach. and will be spared the

need to build and program a controller from scratch. .More information on the

general-purpose controller hardware we use in the Vibro-acoustic Experiment can .e
found in Chapter 11. CONTROL HARDWARE on page 10. The software is described

in general terms in Chapter IV. DESIGN OF THE CONTROL SOFTWARE on page

43.

C. DIFFERENCES FROM EARLIER EFFORTS

Like earlier experiments, this one is housed in a GAS canister. It differs from them,

however, in several key respects.

1. Isolation of Microphones

The experiment uses microphones housed in a mounting designed at the Naval

Postgraduate School to isolate them from vibration. This is intended to reduce the

2

contamination of the recorded acoustical waves by structural vibrations. This micro-

phone arrangement is described in Stehle [Ref. 5].

2. Solid State Data Recorder (SSDR) Using Bubble Memory

Conventional reel-to-reel tape recorders are supplanted by a recorder using

magnetic bubble storage. This recorder was also designed at the Naval Postgraduate

School and has the following advantages over conventional recorders.

1. It contains no moving parts, so is less prone to mechanical failure.

2. It permits random access to data, not possible with tape. While such a capability
is commonplace with disk storage, disks do suffer from mechanical breakdown.
Also, they are vulnerable to errors when external accelerations occur, as they do
during a launch. This is less problematic in the case of bubble memories.

3. Bubble memory is non-volatile, that is, its contents are not destroyed when power
is removed. Thus battery power is not required to keep the stored data available.
Slightly offsetting this advantage is the fact that power must be removed in a con-
trolled fashion, and specified temperature limits must be maint:fined.

The magnetic bubble recorder is described in Frey [Ref. 81.

3. Microprocessor Control of the Experiment

To operate the experiment, another group at the Naval Postgraduate School

built a single-board, microprocessor-based controller. This general-purpose controller

uses a National Semiconductor NSC800 microprocessor (roughly equivalent in function

to a Zilog Z-S0). This controller, as it was originally conceived, is described in Wallin

[Ref. 31. From a programmer's standpoint, the controller has the characteristics de-

scribed in Chapter II. Section A. Standard Controller on page 10.

The controller will be responsible for:

1. activating all subsystems at the appropriate time;

2. monitoring execution of the experiment;

3. keeping a log of significant events and the dates and times at which they occurred.
This log is stored in the controller's bubble memory module;

4. recording temperature and voltage readings while the shuttle is in space; and

5. ensuring that the bubble memories do not get too cold. This is done by
intermittently operating the heater subsystem to maintain a temperature above
10°C . [Ref. 1: p. 31

In addition to the obvious functions called for in controlling the experiment, the soft-

ware also contains a menu-driven diagnostic subsystem to provide for testing on the

ground. kSee APPENDIX B. CIIOICE OF A SOFTWARE DEVELOPMENT SYS-

3

TEM on page 83 for a general description of the several software development systems

we have used.)

D. PROCEDURAL OUTLINE OF THE VIBRO-ACOUSTIC EXPERIMENT

In this section we sketch an outline of the operation of the Vibro-acoustic Exper-

iment. The flowcharts in Chapter IV, Section 2. Performing the Experiment on page

46 show the procedure which the experiment follows. A synopsis of this procedure is

provided here.t The experiment begins to operate when the ground crew or astronauts

turn on a switch in the cabin, causing power to be applied to the GAS canister which

houses the experiment. With power applied, the microprocessor comes to life. Its first

task is to initialize the programmable hardware ports and timers. It then has to decide

whether or not to perform the complete experiment or an abridged version of it. The

need for such a decision will become apparent presently. For the moment we will con-

fine our attention to the unabridged experiment.

1. Siieep Phase

Once the cargo bay has been loaded, the ground crew will activate the exper-

iment for about an hour to let it perform the s , phase. During this phase, the cargo

bay is irradiated with a sequence of acoustic tones of known frequencies and the acoustic

response of the enclosure is recorded by the Solid State Digital Recorder (SSDR). After

the mission, analyzing this data [Ref. 9] and comparing it to the echoes recorded during

launch will reveal the locations of the regions most and least prone to damage from vi-

bration. This phase is the longest, and lasts 13 minutes.

2. Detection of the Auxiliary Power Units (APUs)

The Space Shuttle's Auxiliary Power Units (APUs) are jet turbines used to op-

erate control surfaces during launch and recovery of the shuttle. The APUs start to

operate around five minutes before launch. Because they emit a characteristic frequency

at 600 Hz, we can use a matched filter to detect their acoustic signature

[Ref. 6: pp. 15-18]. When the matched filter detects this signal, it knows that launch

is imminent, and it is time to start recording the sounds which occur prior to launch.

Thus we will record the sounds before, during, and after launch. By not waiting for the

roar of the main rocket engines before starting to record the ambient noise, we will avoid

the problem mentioned in Chapter 1, Section A. Get Away Special (GAS) on page 1.

The data collected by this means should be much more accurate.

I See Chapter IV, Section B. Operation of the Vibro-acoustic Experiment on page 45 for
complete details.

4

Since there exists the possibility that for some reason the matched filter will fail

to detect the APUs, the experiment includes two backup systems.

I. The Vibration-activated Launch Detector will detect the vibrations associated with
launch.

2. A second backup system will use two barometric pressure switches to detect the
drop in atmospheric pressure which occurs as the Space Shuttle rises. These
switches will be placed in a redundant, parallel configuration. Thus, if either one
or both of them work, the drop in barometric pressure will be detected.

Neither of these systems can detect operation of the APUs. However, if either one

should detect a launch, the control program stops waiting for the APUs to come on and

switches immediately to the launch phase.

If the matched filter successfully detects the APUs but the Vibration-activated

Launch Detector fails to detect launch, the barometric sensor will cause the experiment

to switch to launch phase, albeit a little late.

It would be unfortunate if the matched filter failed to detect the APUs, for then

one of the primary advantages of the Vibro-acoustic Experiment over earlier efforts to

record acoustical noise in the Space Shuttle would disappear. It would be doubly un-

fortunate if neither the matched filter nor the vibration detection subsystem worked, for

then no data would be recorded until well after launch. If any one of the three systems

works as designed, then the experiment will acquire at least some data.

3. Scroll Phase

If the matched filter detects the APUs, the control program will place the Solid

State Data Recorder (SSDR) into scroll mode. In this mode, the SSDR uses a subset

of its bubble memory for recording the ambient noise prior to launch. The fraction of

memory dedicated to this purpose permits at most 110 seconds of recording time. Once

this nemory is used up, the SSDR will start re-using it from the beginning. .As a result

of this mode of operation, roughly two minutes of pre-launch noise will be recorded,

along with the noise of the ignition of the main engines.

4. Launch Phase

Either the vibration detection subsystem or the barometric sensors can trigger

detection of a launch. When a launch is detected, the control program puts the SSDR

into launch mode. The purpose of this mode is to record the noise after the launch be-

gins. In launch mode, enough memory is dedicated to permit about two minutes of

2 In effect, the SSDR is writing onto a continuous, looped scroll, hence the name of this mode
of operation.

I5

ambient noise to be recorded. 3 Once this memory is exhausted, the SSDR will signal the

control program that it has finished operations.

5. Post-launch Operations

After the SSDR has signalled completion, the Vibro-acoustic Experiment has

finished gathering all the acoustical data it needs. The controller will continue, however,

to monitor and record temperature in the GAS canister and record this information in

its own bubble memory module. It will also monitor and record voltage levels of each

of three power supply batteries. If these should fall below 8.5V, it will halt. This pre-
vents loss of data in the bubble memory due to insufficient voltage and current levels.

The basis for choosing 8.5V follows. Each individual cell is rated for 2.OV.

There are five of these cells in the 10 V stack which powers the bubble memory. If any

cell drops to 1.81V or below, it is considered to be below the operating threshold. Five

such cells generate 9.05V. The bubble memory itself can operate on as little as 5 V.

We know that the batteries are losing power when the voltage falls below 8.5 V. but we

still have a margin of 3.5 V above the voltage required to operate the bubble memory.

(The margin is reduced slightly due to the presence of 5 V voltage regulators in the cir-
cuit, but it is still ample.) It is therefore reasonable to halt operations if the voltage falls

below 8.5V.

Also, if the temperature of the bubble memory falls below I 0C. it is below the

minimum operating temperature. and we will suspend operation of the bubble memory

until the temperature returns to 10'C once more. Likewise, if the temperature should

rise above 55'C, it is above the maximum operating temperature, and bubble memory

ope~ations will be suspended until the temperature drops within the operating range

again.4 [Ref. 1: Chapter 1. p. 31

6. Abridged Experiment

NASA has balked at the idea of our performing the sweep phase. They are

concerned over the possibility that the loud sounds generated during the sweep might

damage other payloads or frighten technicians. They also are reluctant to remove per-

3 Since the shuttle's cargo bay is not pressurized, the air will leak out as the outside pressure
drops. After two minutes, there will be no appreciable atmosphere left inside the cargo bay, and
all sound will have ceased.

4 These checks are only performed during the post-launch phase, which begins within two or
three minutes from the time of launch. It is unlikely that NASA would launch the shuttle if the
outside temperature were below 10'C, and we do not anticipate that the temperature will fall
appreciably within the first three minutes of flight.

6

sonnel from the vicinity of the shuttle during that phase. They are equally reluctant to

require those personnel to wear hearing protection during the sweep.

Those arguments seem specious to us. It strikes us as unlikely that damage to

equipment might result from the sweep but not from the rocket motor noise during lift

off. We cannot see the reason why personnel whose hearing might be damaged during

the sweep cannot wear hearing protection. While we can still perform an analysis of the

recorded data without first doing a sweep, it is likely to produce less useful results.

We have decided to proceed as we wanted to originally, that is, to design an

experiment which would do everything we want. We have added an additional decision

point to permit the abridged experiment to take place. This shortened experiment would

simply turn on the recorder when the APUs were detected or when launch occurred, and

we would hope for the best. There would be no sweep, no scroll, and no launch phases:

there would only be a record phase, once the APUs or a launch were detected.

Once NASA sees that the abridged experiment works, that the analysis provides

good results, and that permitting the unabridged experiment will yield even better data,

we hope that they will relent and permit us to fly the experiment again in the unabridged

mode.

E. IRREGULARITIES

What happens if the power fails temporarily and then is restored? This might hap-

pen if the power switch is inadvertently switched ofi' by the ground or flight crew, or

through some equipment malfunction. Upon the restoration of power. the micro-

processor must decide where in its procedure to resume execution. There are several

cases to consider.

I. The sweep phase has never been initiated, nor has a launch occurred. The correct
action is to start at the beginning.

2. The sweep phase has been initiated. It is not known whether or not it ever was
completed, but a launch has not occurred. The correct action is to skip the sweep
phase and wait for some indication of a launch. The sweep creates a very loud
noise which would be hazardous to ground personnel if it were permitted to occur
at other than a scheduled time. Since this time is not known at present, and never
is firmly enough known in advance to be programmed into the computer, we can-
not risk running the sweep phase if it is interrupted by a power fault.

3. The sweep phase has been initiated (and presumably completed). the APUs are on,
but no indications of a launch are present. The correct action is to enter scroll
mode. If it was already in progress when the power fault occurred, it will be re-
started. This is all right, since no vital information will be loqt by this procedure.

4. The sweep phase has been initiated (and presumably completed) and conditions of
a launch are present but the barometric switch has never been tripped. The correct

7

action is to assume we are just beginning a launch and to initiate launch mode.
This creates a risk that recordings of the moment oflaunch would be lost if a power
fault occurred between the moment of launch and the triggering of the barometric
switch as the spacecraft ascends. There is no obvious way entirely to eliminate this
risk.

5. The sweep phase was initiated (and presumably completed) and the barometric
switches were activated at some earlier point. This implies that the power fault
took place after the activation of the barometric switches, that is, after launch. The
correct action is to assume that launch data was successfully recorded and to initi-
ate the post-launch monitoring operations.

F. OTHER APPLICATIONS

The controller hardware is sufficiently powerful that it could easily provide control

for other applications. In particular, many spaceborne applications could be operated

by it.

In the course of developing the control software, we had to create support routines

to take care of a great many mundane functions. In computers with operating systems,

these functions are typically provided by the operating system. The user has merely to

know about them and use them.

The controller we use has no operating system. so we had to create many low-level

functions, e.g., one which converts a hexadecimal number to a character string repres-

enting that number.

At a higher level, we wrote subroutines to display text on a terminal, operate a

bubble memory, operate a real-time clock, and control various external devices through

the 44 input and output lines provided with the controller.

By using the low-level subroutines, and by organizing an application's software in

a similar manner, much of the most tedious and uninspiring work entailed in producing

a control program for this controller hardware could be avoided. This would leave more

time to devote to the real purpose of the application. In an environment with few people

available to do the work, such economy is very attractive.

Another consideration is the lack of a need to use assembly language in program-

ming the controller. In the very few places where it was required, we used it. Along

with the large collection of C language subroutines of general applicability, the routines

we have already provided in assembly language should suffice for almost all run-of-the-

mill work.

In one area we were ourselves compelled to abandon the use of C language source

code and switch to assembly language code. We initially hoped that only the start-up

code, the input routine, the output routine and the software delay routine would require

8

the use of assembly code. We assumed we could input from and output to the bubble

memory using compiled C language source code.
This assumption turned out to be incorrect. We needed a data transfer rate of

16,000 bytes per second [Ref. 1: Chapter 1, p. 3], but could only attain around 3,000
bytes per second. Consequently, we had to replace a small section of C code with as-
sembly language source code. Even this was necessary only because we used a prototype
bubble memory board with a buffer whose size was inadequate to handle data transfers.
While this buffer provided only 40 characters of space, we needed 64.

When speed becomes paramount, assembly code may be necessary, since it can be
tailored to the job at hand and so produce very efficient programs. 5 For many applica-
tions, however, speed is not critical. It ordinarily is foolish to waste time achieving in
assembly language what can be done much more quickly using a high-level language.
Only if you cannot achieve the desired performance with a high-level language. must you
use assembly language.

Irrespective of whether some portion of an application does or does not demand
efficient code (written in assembly language), for most applications the majority of the
code can be written in a high-level language such as C. Many applications, too, need
no more facilities than those provided in the Vibro-acoustic Experiment. In such cases,
building on the work presented in this thesis has very clear advantages.

5 Nonetheless, some optimizing compilers surpass quite competent assembly language pro-
grammers in efficiency.

9

11. CONTROL HARDWARE

The controller we use in the Vibro-acoustic Experiment is based on the NSC800
microprocessor. For all practical purposes, this is functionally equivalent to the Zilog

Z-806 [Ref. 10]. Figure I on page 1 I is a block diagram showing the major components
of the system. To the left of the microprocessor appear those peripherals which ordi-

narily fall under the control of the standard controller. We discuss these peripherals and
their capabilities in Section A. Standard Controller below. One can connect an assort-

ment of devices to the 44 input and output lines available on it. Other applications than
the Vibro-acoustic experiment could use this bare-bones controller for their own pur-

poses.

To the right of the microprocessor appear those peripherals which are peculiar to
the Vibro-acoustic Experiment. We discuss these peripherals and their capabilities in

Section B. Additional Controller Hardware on page 14 below.

A. STANDARD CONTROLLER

1. NSC810A RAM-l/O-Timers

Two NSCSIOA RAM-I O-Timer units provide four eight-bit ports and two six-

bit ports. These provide 44 bits of input and output capability. There also are two
timers on each device. One of each pair is completely independent of the data ports; the

other, if used, reduces the number of available pins in the six-bit port tc three. We have
corfigured the system such that one of the latter kind of tinier is unavailable, since we

have dedicated the data lines with which it interferes to other purposes. The two timers
which do not conflict with any data lines at all are dedicated to providing:

1. A 153.6 kHz signal to the IM6402 Universal Asynchronous Receiver Transmitter
(UART) where it is divided by 16 to yield a 9600 BAUD clock for serial data
transmission.

2. A 614.4 kHz clock which is provided to the ADC0816 Analog-to-Digital Converter.

Thus one of the four timers is available for other uses.
We shall hereafter refer to the two devices as NSC8lOA #1 and NSC810A i.2

respectively. The NSC8I0A reference manual [Ref. 111 refers to the eight-bit ports by

6 The NSC800 includes several instructions not included with the Z-80. Since the Z-80 is the
better-known device, we have not used any of the added instructions.

10

Micro.

w O1itt IA~

SUNvendr

3Power

S

(A

p~~Sau Prsntol m~'

Figure1. Blck digram f majr comoneRecofrter Proa owce prmet

(SIA

the letters A and B, and to the six-bit port by the letter C. In the rest of this thesis, when

we wish to distinguish between ports on NSCS1OA #'l and NSCSIOA ;=2, we shall ap-

pend a subscript to the port's letter, e.g., A. is NSC810A #1, port A.

NSC810A #1 uses port addresses OxOO through 0x19. 7 NSC810A 92 uses port

addresses 0x20 through 0x39.8

General information on programming the NSC810A can be found in [Ref. Ill.

We present the specific manner in which these devices have been programmed for the

Vibro-acoustic Experiment in Section A. Major Subroutines and Functions on page

108.

2. On-board Analog-to-digital Converter

An eight-bit, 16-channel. National Semiconductor ADC0816 analog-to-digital

(A D) converter permits the monitoring of voltages and tempcratures at various points

within the experiment. It can be mounted right on the microprocessor-based controller

board. The device is connected starting at input output space address 0x80. Conversion

of an analog input to a digital number is signalled to the control program by the exist-

ence of a I in bit 3 of port C,.

3. Bubble Memory Module for the Controller

Devoted to the use of the controller board is a 512 KByte Intel BPK 5V75A

Four-Megabit Bubble Memory Prototype Kit. The control program will maintain a log

in this memory of all actions it takes during the experiment. The information will in-

clude a code signifying the action taken, the time and date of that action, and the current

temperature and voltage readings.

After launch, the Vibro-acoustic Experiment is over. The control program then

uses the log solely for the purpose of recording temperatures and voltages.

Port address 0x40 provides access to the bubble memory. There are 8192 pages

of 64 bytes per page. Pages of the bubble memory can be specified at random by num-

7 The term "port" is somewhat ambiguous. The NSC8lOA reference manual [Ref. IlI refers
to a collection of pins within an NSC810A integrated circuit as a port. This particular device
contains three ports: A, B and C. In common parlance, however, the term port refers to a par-
ticular address in the input-output address space (1, 0 space) of the Z-80. This space spans ad-
dresses from OxOO through Oxff. We might say, for example, that we perform an input operation
from port Oxla. This is equivalent to saying we input a byte (character) from 1 0 space address
Ox Ia. We shall seldom attempt explicitly to state which use is intended. The meaning may gener-
ally be ascertained from the context.

8 See the discussion on hexadecimal notation in the Glossary.

12

bers from 0 through 8191. Port address 0x41 provides control information for this

memory device.

The bubble memory's reset line should be brought low by placing a 0 in bit 5

of port C2 before applying power to or removing power from the bubble memory. It is

important to wait at least 50 ms after applying power before attempting to initialize the

bubble memory [Ref. 1: Chapter 4, p. 3].

Power can then be applied to the bubble memory by putting a 1 in bit 4 of port

C2. Putting a 0 there removes power.

Details of the operation of this memory and the meaning of the control byte

information are in [Ref. 1]. We describe the manner in which we have programmed the

bubble memory to support the Vibro-acoustic Experiment in Section A. Major Sub-

routines and Functions on page 108.

4. Real Time Clock

A National Semiconductor MM58167A real time clock makes it possible to re-

cord in the log of events the dates and times of all actions taken. We also use this device

to limit the amount of time the control program waits for various events to occur. If the

event does not occur for some reason, the control program decides to stop waiting.

For example, once the Auxiliary Power Units (APUs) are detected, there is a

window of about seven minutes in length. If launch does not occur within this window,

the launch will be scrubbed since the APUs will no longer have sufficient fuel. We can

therefore regard the experiment as having been aborted if this amount of time passes

without a launch. We use the real-time clock to detect the passage of this period of time.

5. RS-232C Serial Input/Output Port

An RS-232C interface provides conmunication with a serial device such as a

terminal. This makes it feasible to monitor and control the system on the ground. By

connecting a terminal to this interface, the user has access to an extensive, menu-driven

diagnostic subsystem. (This menu subsystem is dormant if there is no terminal at-

tached.) No intelligence currently is required on the part of the terminal: it is purely a

display device.9 Port address OxeO holds control information to and from the serial de-

vice. Port address OxcO funnels data either to or from the device. Table I on page 14

shows the use of the bits of the control port.

9 Mr. David Rigmaiden of the Space Systems Academic Group at the Naval Postgaduate
School has proposed encoding the diagnostic messages and using an intelligent terminal to display
the corresponding human-readable messages. However, no one has yet done any work on this.

13

If there is a terminal connected to the RS-232C Serial port at addresses Oxco

and OxeO, then bit 3 of port C, will be a 1. This permits the control program to distin-

guish diagnostic operation on the ground (when there will be a terminal attached) from

actual performance of the experiment (when there will not be a terminal attached.) As

can be seen in Figure 1 on page 11, the Vibro-acoustic Experiment will not use a ter-

minal when it is in space.

Table 1. ASSIGNMENT OF BITS IN THE RS-232C SERIAL INTERFACE
PORT: This port uses address x~e for control information and OxOc for
data.

Bit Direction of MeaningData Flow Meaning

0 Input 0 if the attached device can accept output ilor-
mation. I otherwise.
1 if the attached device has data available, 0 oth-I I nput ervise.

B. ADDITIONAL CONTROLLER HARDWARE

The Vibro-acous!. , ..periment uses several subsystems which are not a part of the
standard controllc.. lost of these subsystems appear to the right of the microprocessor

in the block di.,gram in Figure 1 on page 11. The only one which does not is the Power

Control Subsystem, which is drawn below the microprocessor. These subsystems have

the following functions:

1. Analog-to-digital Converter Subsystems

Three A, D converters convert the analog acoustical signal detected by a set of

three microphones into the digital format required by the Solid State Data Recorder

(SSDR). The design and operation of the SSDR is provided in [Ref. 9].

2. Solid State Data Recorder (SSDR)

The SSDR is comparable in function to a conventional reel-to-reel tape re-

corder. Unlike a standard tape recorder, it is not limited to sequential operation; it can

access data randomly. The operation of the SSDR is more fully described in [Ref. 8].
To issue a command to the SSDR, place its code in port A, on NSC8IOA .1,

located at 1, 0 space addresses OxOO through 0x19. The SSDR will place a status code

reflecting its operating state in port A2 . Table 4 on page 17 defines the command codes

14

Table 2. BIT ASSIGNMENTS FOR READING POWER SUBSYSTEM RELAY
SETTINGS: The position of relays may be determined by reading port
B2 (on NSC810A #2), which is located at I 0 space addresses 0x20 through
0x39.

Direction
Bit of Data Value Meaning

Flow
0 Not used.

I The Solid State Data Recorder (SSDR) is on
0 The SSDR is off.

I The Voltage Controlled Oscillator (VCO) is off.
U It is off.

1 The Analog to Digital Conversion (A D) cir-
Input culit is on.

0 It is off.

The Matched Filter . Vibration-activated
Launch detector, and Barometric Pressure4 Input Switches are on.

0 It is off

Input I The heater circuit is on.
I I I It is off.

for the SSDR. Table 5 on page 17 defines the status codes the SSDR can return to the

control program. The following SSDR commands are of particular note:

Sweep Record 12.5 minutes of pre-determined frequencies emitted by the Voltage
Controlled Oscillator (VCO) prior to launch.

Scroll Record up to 55 seconds of ambient noise during the five minutes or so
between the time the Auxiliary Power Units (APUs) come on and the time
of launch. In this mode, the SSDR will continually re-use the same portion
of SSDR memory. There are two sections of memory devoted to this pur-
pose, and use alternates between them. Each can hold up to 55 seconds of
ambient noise. When the SSDR is commanded to enter launch mode, the
memory section currently in use will be filled and then the SSDR will switch
over to that section of memory devoted to recording post-launch noise.

Launch The experiment's control program orders the SSDR to enter launch mode
as soon as the Space Shuttle launches. This mode lasts for two minutes,
which is about the time it takes to evacuate the air from inside the
shuttle's cargo bay. During this mode, the SSDR records ambient noise.

15

Table 3. BIT ASSIGNMENTS FOR CONTROLLING POWER SUBSYSTEM
RELAYS: Relays may be controlled through port B, (on NSCSIOA #l),
which is located at I'0 space addresses OxOO through Ox19.

Direction
Bit of Data Value Meaning

Flow

I Turn on the relays specified in the other bit
0 Outputpositions.

0 Turn off the relays specified in the other bit
positions.

I Operate the Solid State Data Recorder

1 output (SSDR).

0 Do not operate the Solid State Data Recorder
(SSDR).

I Operate the Voltage Controlled Oscillator

2 Output (VCO).

0 Do not operate the Voltage Controlled
Oscillator (VCO).

I Operate the Analog to Digital Conversion
(A D) circuit.

0 Do not operate the Analog to Digital Conver-
sion (A D) circuit.

I Operate the Matched Filter (including
4 Output accelerometer and barometric switch).

0 Do not operate the Matched Filter.
1 Select the heater circuit.
0 Do not select it.

As can be seen in the flowchart in Figure 22 on page 50, most of the experiment

is devoted to the operation of the SSDR, that is, to placing it in the mode appropriate

for the current phase of the Space Shuttle's mission.

3. Matched Filter

As mentioned in Section 2. Detection of the Auxiliary Power Units (APUs)

on page 4, a matched filter will detect the characteristic 600 Hz signature of the APUs.

This device will place a I in bit 0 of port C, if a detection occurs. Normally it leaves a

0 there. Table 6 on page 18 shows the uses of all the bits of Port C, The matched filter

is described in Chapter III. THE MATCHED FILTER on page 21.

16

Table 4. SSDR COMMAND CODES: Commands are issued by writing them to
port .41 on NSC810 #1. located at 1 0 space addresses OxOO through 0x19.

Code Value Meaning
STANDBY Ox01 Commands the SSDR to cease all operations and

await further commands.

Commands the SSDR to enter sweep mode.
SWEEP 0x02 Enough memory is available for holding holding

12.5 minutes of noise generated by the VCO.

Commands the SSDR to enter scroll mode.
SCROLL 0x04 Enough memory is available for holding 30 sec-

onds of ambient noise.

Commands the SSDR to enter launch mode.
LAUNCH Ox08 Enough memory is available for holding two

minutes of ambient noise.

Commands the SSDR to start recording noise.
RECORD Oxl0 This is analagous to the RECORD button on

conventional tape recorders.

Commands the SSDR to play recorded data back.
PLAYBACK 0x20 This mode is analogous to the PLAY button on

conventional tape recorders.

Table 5. SSDR STATUS CODES: Status codes may be obtained by reading them
from port ,42 on NSCS1O =2, located at I 0 space addresses 0x20 through
Ox39.

Code Value Meaning

OPCOMP 0x40 Shows that the SSDR has completed the last
connand it received.

NOR.IOP 0x80 Shows that the SSDR is operating normally.

4. Voltage Controlled Oscillator (VCO)

The purpose of the VCO is to irradiate the shuttle's cargo bay with sound of a

predetermined frequency during the sweep phase. This is done by applying power to a

loudspeaker. The VCO is designed to step up in frequency from 35 Hz through 785 Hz

in 1 Hz steps. By recording the echoes, subsequent analysis will permit a comparison

of the acoustical response of the pure tone to that of the noise generated during launch.

5. Vibration-activated Launch Detector

This circuit is mounted on the same circuit board as the matched filter. Its

purpose is to enable the control program to detect a launch, and so enable it to corn-

17

Table 6. BIT ASSIGNMENTS IN PORT C, OF NSCSIOA #1

Direction
Bit of Data Value Meaning

Flow

I Detection of the Auxiliary Power Units (APUs)
has occurred.

0 Detection of the Auxiliary Power Units (APUs)
has not occurred.

I The Vibration-activated Launch Detector has
I Idetected a launch.
0 The Vibration-activated Launch Detector has

not detected a launch.

I One of the barometric pressure switches has

2 Input detected a launch.

0 Neither barometric pressure switch has de-
tected a launch.

1 No terminal is connected to the port.
Input A terminal is connected to the RS-232C serial

interface port.

Order the power subsystem to change the
I states of the relays specified in the command

S Output at port B,

0)o not change the states of the relays.

Not used.

mand the Solid State Data Recorder to enter launch mode. It will set bit I of port C,

high when it detects a launch (see Table 6 on page 18). Even if the matched filter never

detects the APUs, detection of launch will still cause the control program to force the

SSDR into launch mode.

6. Barometric pressure switches

On the same circuit board as the matched filter there are two barometric pres-

sure switches connected in a redundant, parallel configuration. These switches serve as

a backup for the Vibration-activated Launch Detector. Either one of them will place a

high voltage in bit 2 of port C, (see Table 6) when pressure drops below 27.9 inches of

mercury. This pressure corresponds to an altitude between 1500 feet and 2000 feet when

the lowest barometric pressures on record at Cape Canaveral are present. In general,

18

Table 7. BIT ASSIGNMENTS IN PORT C OF NSC810A #2

Direction
Bit of Data Value Meaning

Flow

0 Output 1 Operate the heater subsystem.

0 1 Do not operate the heater subsystem.
I Not used.

2 Not used.

Analog to digital conversion is complete. This
I refers to the On-board A, D Converter (see

3 Input Figure 20 on page 48).

0 Analog to digital conversion is not yet com-0 plete.

4_OutputI Apply power to the bubble memory.

0 Do not apply power to the bubble memory.

1 Do not apply a reset signal to the bubble
memory. This is the normal setting.
Apply a reset signal to the bubble memory.

5 Output This must be done while power is applied to
0 or removed from it. Once the power has been

switched on or off. the reset line can be re-
turned to 0.

the corresponding altitude will be somewhat higher than this since barometric pressures

will generally not be at their lowest when NASA launches a Space Shuttle.

7. Heater Circuit
The purpose of the heaters is to maintain the temperature of the controller's

bubble memory module at or above 10°C during operation, and above -20'C otherwise.

To do this, there are heater strips attached to the bubble memory module. To turn on

the heaters, the control program places a I in bit 0 of port C,. It puts a 0 there to turn

them off. Insufficient power is available to heat all the bubble memories in the Solid

State Data Recorder (SSDR). If the contents of the log are saved, however, it should
at least be possible to ascertain the c,.use of the loss of acoustic data in the SSDR.

8. Power Control Subsystem

Three batteries of dry cells, each powering a different bus, provide power to the

experiment. Partly in order to conserve power, but also to permit isolation of subsys-

tems if an overheat condition occurs, most subsystems receive power only when neces-

19

sary. The power subsystem includes a relay for each of these other subsystems. By

writing appropriate commands to port B, we can turn power to the relays on or off.

Table 2 on page 15 shows the uses of the pins of port B, for this purpose. By reading

a status byte from Port B we can ascertain the position of each relay. Table 3 on page

16 shows the uses of the pins of port B, for this purpose.

Let us designate as relay, the relay controlled by pin i of port B1.10 Valid relays

are relay, through relay,.

There is no relayo since bit 0 of port B, has a special purpose. If bit 0 of Port

B, is a 1, then eligible relays will be switched on. If bit 0 of Port B, is a 0, then eligible

relays will be switched off. Placing a 1 in bit i of Port B, makes P.,ay, eligible for

switching. Finding a 1 in bit i of port B2 means relav; is on.

Once we have issued a command to alter the position of one of the relays, we

place a 1 in bit 4 of port C, for 20 ms to permit the command to take effect, then put a

0 in that bit.

10 Note that pin i of port B, refers to the same relay as does pin i of port B2.

20

111. THE MATCHED FILTER

This chapter describes the design of a filter whose purpose is to detect the presence

of the 600 Hz tone characteristic of the space shuttle's Auxiliary Power Unit (APU).

This circuit has not yet been built and tested, but the most critical sub-circuit, the

bandpass filter it uses, has been simulated. The results of the simulation match the

predicted performance very closely and are included in this chapter.

The existence of the tone and the equation of a fourth-order elliptical (Cauer)

bandpass filter for detecting its presence are documented in Jordan [Ref 6]. While the

thrust of Jordan's work was to develop a digital filter, the implementation described in

this thesis uses analog electronics. This implementation has the advantage that it can

be constructed expeditiously with readily available components and requires less elec-

trical power. The digital implementation described by Jordan requires special hardware

and components. In particular, the Intel 2920 Digital Signal Processor integrated circuit

he proposed to use is no longer in production. Jordan does propose an analog imple-

mentation in addition to the digital one. It requires six operational amplifiers; the design

proposed here requires only four, and so require less power to operate. This is important

in this application, since power is limited.

The term matched filter ordinarily refers to a particular kind of filter based on

autocorrelation. However, the term has come to be applied incorrectly to the bandpass

filter used to detect the application of power to the Auxiliary Power Unit. Rather than

abandon the term matchedfilter, which has become thoroughly entrenched in the doc-

umentation of the Vibro-acoustic experiment, this author will continue to use (misuse)

it to denote a narrowband filter whose purpose is to respond to the characteristic

600 Hz tone emitted by the space shuttle's Auxiliary Power Units beginning about five

minutes before launch. Figure 2 on page 22 is a block diagram of the author's proposed

design for the matched filter.

A. MICROPHONE INPUT STAGE

The microphone input stage is shown in Figure 3 on page 23. It uses a Panasonic

WM-063T microphone. A 620 Q resistor limits the current through the microphone to

8 mA. The output is an AC signal superimposed on a DC bias.

21

MATCHED FILTER

NICROP40NE HIGH PRE- ORDER
[NPOI PASS AMPLIFIER ELLIPTIC AMPLIFIrER
STAGE FILTER 1ANOPAS

'IC PREMP BPI,

- a

FULL-RAVE SECOND '~THRESHOLD P PE SE T ALE tc

R RODR --- DETECTOR FULSE I. GEREQRATOR
LOUPASS >COUNTER

"IG" IF Gee ;.z

~*E II

rigure 2. Block diagram of the Matched Filter.

B. HIGH-PASS FILTER

Figure 4 on page 24 shows the high-pass filter which connects the microphone to

the pre-amplifier. The purpose of'this filter is to elimninate the DC bias from the m~icro-

phone signal. While simple AC coupling can in principle be providcd by a capacitor

alone, a resistor to ground must be included to provide a path for DC rirom the non-

inverting lead of the pre-ainplifier. Even though the input bias current of the OP1A Ill

operational amplifier used to implement the pre-amplifier is less than 2 pA, if this were

neglected, charge would accumulate on the coupling capacitor and the amplifier would

saturate.

Tecut-off frequency of the high-pass filter was set quite low, at

fC- I I =7lz 2
'2nRC 2x(150 Kl)(15QnF)=7z(2

Since the signal of interest is wvell above this, at f = 600 1lz, the filter introduces no sig-

nificant attenuation or phase shift.

22

MICROPHONE INPUT STAGE
+5V

O CURRENT
N LIMITER

ACOUSTIC

S I GNAL
WITH DC OFFSET

PANASONIC WM-063T
M ICROPHONE

Figure 3. The microphone input stage.

C. PRE-AMPLIFIER

Figure 5 on page 25 shows the pre-amplifier, which boosts the microphone output

voltage by a factor of II (21 dB) using a non-inverting configuration of the OI'A-I II

operational amplifier. The OPA-I II has a very low noise of less than 40 nV/V liz at

f= 100 l lz; at higher frequencies it is even lower. Thus the microphone input is boosted

to reasonable levels without injecting significant noise into the signal and is buffeired

prior to the bandpass filter.

D. FOURTH-ORDER, ELLIPTICAL (CAUER), BANDPASS FILLER

Jordan fRef. 6: p. 45] gives an analog implementation of a fourth-order, elliptical

(Cauer), band-pass filter. The design provided below reduces the number of operational

amplifiers by two, from six to four.

The coefficients of the necessary transfer function are given in IRef. 6: p. 361 and are:

s4 + 2.9587 x 10's 2 + 1.8991 x 10'"

G(s) - s + 2.4351 x 102s 3 + 2.7642 x 107s 2 + 3.3558 x 109s + 1.8991 x 1014 '

The author used a computer program to find the roots of this transfer function, which

can be rewritten as follows:

23

HIGH PASS FILTER
CUT-OFF FREOUENCY 7 Hz

ACOUST IC-A DC-BLOCKED

SIGNAL F ACOUSTIC
WITH I5OnF SIGNAL

DC OFFSET

Figure 4. High-pass filter.

G(s) (s +j4.49 x 1) 1)(s -j4.49 x 10))(s +j3.07 x 101)(s -j3.07 x 10) (4)
(s + 62 +j3.84 x 103)(s + 62 -j3.84 x 10')(s + 58.8 +j3.59 x 101)(s +58.8 -j 3.5 9 x 10

By multiplying together the terms containing complex conjugates of each other, we ob-

tain the biquadratic representation of this function.

(o3.0.) ' 4.491 s2-)2

G(s) = 2 + 3.6 x 10 3) - 0) J.R4 x2 +0 3~9 i))S + 30.5)s+ (356x 0×s + (31.0 s + (3.843 x 101'

Each of the factors in this expression has been written in the form

2 2

F(s) = (6)

This is the equation of a notch filter, given by Ghausi [Ref. 12: p. 161. If W, = w,, then

the notch filter is synmmctric, that is, the attenuation curve to the left and right of the

notch frequency is symmetric about that frequency when the transfkcr function is plotted

on a logarithmic frequency scale. The first factor in equation (5) has (A, < rW,. Conse-

quently, this factor represents a high-pass notch filter. The magnitude of G(s) rises once

co in s =jc exceeds co,; it levels off once c exceeds c,. By contrast, the second factor in

24

PRE-AMPL IF I ER

V in OPA I II

Figure 5. Pre-amplifier.

equation (5) has w, > co,. *h.relbre, this flactor represents a low-pass notch filter. The

magnitude of G(s) drops one w in s =jo exceeds co,; it levels off once wc exceeds w,. A

low-pass notch filter and a high-pass notch filter placed in cascade form a bandpass filter

if suitable choices for co, and co, are made in each case.

It can be difficult to implement cascaded filters successfilly. Ilowever, the cazcade

filter is very attractive due to its simplicity, and for this reason we have employed it here.

The design presented has been simulated and so we believe it would he quite straight-

forward to implement it in hardware.

The three forms of notch filter and the bandpass filter formed by cascading a low-

pass and a high-pass notch filter are shown in Figure 9 on page 29. Three of these

curves were calculated by computer from the factors in the transfer function given in

equation (5). The symmetrical notch filter transfer function plotted in the figure is an

example of what results from equation (6) when w, = co,. It, too, was calculated by

computer from the transfer function. When the high-pass notch filter is multiplied by

(put in cascade with) the low-pass notch filter, the bandpass filter shown in the figure

results. By using asymmetrical notch filters, as opposed to synUnetrical ones, we can

obtain high gain in the passband. In this region both notch filters have high gain and

so reinforce one another.

25

Plot of an Elliptical 4th Order
Bandpass Filter

............... - ----... .- -----.............. I-------------

o

............... !................I........ I i..

200 400 1000

f, Hz

Figure 6. Nlagnitude of the transfer function of the elliptical bandpass filter.

The transf'er function for equation (5) is plotted separately in Figure 6 on pave 26;

this plot, too, was generated by computer. The advantage to writing the equation for

the elliptical band-pass filter in the form or' equation (5) is that it is a comlparatively

simple matter to implement biquadratic filter sections using operational amplifiers; by

cascading these sections. the entire transfer function can be implemented. Again, it can

be difficult to implement this scheme.

Figure 7 on page 27 shows a schematic for a generalized hiquadratic filter using two

operational amplifiers. The blocks labeled with the letter "Y" represent adnmittances.

The design equations for these two filter sections are derived in APPIEND)IX A. Deri-

vation of Design Equations for the MNatched Filter on page 71. For the high-pass notch

filter, they are

26

Y2 Y4~2 8
V~

Y= C, : Z, = (7)

Y3 C*7oo (9I)

Y= SCb'*Z 7 = 1(12)

1 78 QpR(13)

27

r (URTH-ORDER ELL I PT 1(C
BANDPASS FILTER

GAIN =30 dB AT f =600 Hz
ATTENUAT ION 0 dB AT I < 500 Hz AND I > 700 Hz

3 dB BANDWIDTH =50 HZ

6 10@KQ 2 -

L F~ L444 27. 9o L F4 44

2 7, 90 o 0

AC SIGNAL IN-

12

F I L T ER ED
1KQ261 N SIGNAL OUT

Figure 8. A fourth-order, elliptic batidpass filter %sithtQ 12: It provides 30 dil

of attenuation outside the passband.

28

High-pass Notch Flter Low-pass Notch Filter

*- ------4----I,---- --.... -...------ t------ -------

i------ 4 -- ----- i, t--- -... - -4

.4 5' L - T 4"---+4----- --

..

7 ---- 7 ------....

...

..

400 500 600 700 S00 400 500 GOOD 700 600
f. Hz f, HZ

Symmietrical Notchr Fiter Bondoss rifer rnod- ty Cascading
Two Asymmretric Notch Filters

T --

----------g ---- ------ ;...---- ------

----------~~ ~ ~ ~ -----.... 0...... ---............... I.....

-----

...........-.--.. ---- ... ---

---- 0 700--- 40 60 00...... .800

......Hz

Figure~.... 9. Notc-- fites S}. .c low-pass an h.g-pas .ntc.fiter;. ad.

Figure bNdpass filter formue rom low-pass and high-pass notch filter n

* cascade.

29

= C ,1 (14)

R 1C ' (15)
cpC

For the high-pass notch filter, w, = 3.068 x 101, co, = 3.586 x 10 , and Q, = 30.5. Hence

C= =8.176. (16)

If we make the arbitrary choice C, = 10p F, then we get C, = 1.22 uF , R = 27.9 Q,
Z3=R 3 = 100 K2, Z, = R, = 818KQ , and QR = 851 Q. Note that Z, is a resistor

whose magnitude in ohms is the reciprocal of the magnitude of Co in farads. Similarly,

Z 3 is a resistor whose magnitude in ohms is the reciprocal of the magnitude of Cb in

farads. The apparently arbitrary choice for C, was actually not random. This circuit

must be made with components whose stability is high to minimize changes in per-

formance due to changes in temperature. Capacitors with low temperature coefficients

are available in polystyrene up to values of 10 pF. Using this value for C, allows R, not

to be too big, and R not to be too small.

For the low-pass notch filter, the design equations are

Yj = Y5 = -I- -Z = Z5 = Rb (17)

1

Y2 = Y7 =S C,:Z 2 = Z7 (18)

Y3 = Y4 'C*Z 3 = Z4 = Ra (19)
Ra

Y6 = O'Z 6 = 00 (20)

YO - R -* Zs = QRb (21)

Ra W 2 1 (22)

30

C 1 (23)
Rbwop

For the low-pass notch filter, wo,=4.491 x 1rad,'s, co,= 3.843 x l0 rad,!s, and

Q, - 31.0. So

Ra
- = 11.35. (24)
Rb

If we arbitrarily pick R= I KL2, then R, = 11.4 KQ, C=260 nF, and QR = 31 K Q.

Figure 8 on page 28 shows the complete bandpass filter. We have used the LF444 Quad

Low Power JFET Input Operational Amplifier. It has an extremely low input bias cur-

rent of 50 pA at most, and only 35 nV/.<Hz noise voltage.

We simulated the frequency response of this filter using Micro-Cap III [Ref. 13J.11

We found that it performed almost exactly as predicted. Figure 10 on page 32 is a plot

generated by Micro-Cap III from its simulation. By comparing this plot with that gen-

erated from the transfer function in Figure 6 on page 26, we see that the only departure

from the predicted performance is a slight asymmetry in the ripple in the passband.

Since we are concerned only with detection of the Auxiliary Power Units' acoustic sig-

nature, and not with faithful reproduction, this is not a matter for concern. The center

of the passband and the location of the upper and lower notch frequencies are at the

predicted frequencies. The gain in the passband also is as predicted. The simulation

results are strong evidence of the correctness of the analysis and the feasibility of the

desi2n.

The operational amplifier in the Pre-amplifier is an OPA Ill. Its output impedance

is 100 Q. The input impedance of the bandpass filter is well above 10 kQ' throughout

the passband. The bandpass filter therefore does not provide a significant load on the

Pre-amplifier, and so the simulation results can be considered to be quite accurate, even

though they were produced with an assumption of zero output impedance from the

Pre-amplifier.

II In the simulation, we used two LF442 operational amplifier packages instead of a single
LF444 operational amplifier package. These two packages provide operational amplifiers with
identical electrical characteristics, which justifies the substitution made.

31

Gai n Phoe

Ob Doeg

40.00 -0.0

20.00 _-{- -10.0

0.0 no-218.0

-20.00 -324.0

-40.00 -- ,V-432.0

'___I ____ I

-60.00 l -540.0

300 G00

Frsq ncy In Hz

Figure 10. Frequency response of the simulated bandpass filter: lhis plot was

obtained using Micro-Cap Ill [Icf. 131. [he phase response also is

shown. It is the curve with the staircase-like appearance. The gain

response is nearly identical with that generated by computer and shown

in Figure 6 on page 26.

E. ADJUSTABLE GAIN

Figure II on page 33 shows how a single LF444 operational amplifier is configured

as a non-inverting amplifier of variable voltage gain up to 28 (29 dB). The gain is to be

adjusted so that the strongest output signal has 3 V peak-to-peak. This maximum signal

is that which exists when the Auxiliary Power Unit outputs its characteristic tone.

F. FULL-WAVE RECTIFIER

Figure 12 on page 34 shows the design of a full-wave rectifier. It converts the 600

I lz tone admitted by the band-pass filter into a fluctuating direct current signal. This

32

AMPLIFIER
GAIN < 28

AC COUPLING AT OUTPUT HAS A
16 Hz CUTOFF FREQUENCY

SIGNAL SI G

1 / 4 0 U~ :T

27Ko

Figure 11. Amplifier proiding a variable voltage gain up to 28 28.9 dB.

circuit is modified from an absolute value circuit provided by Jung [Ref 14: pp. 236-2371.

It operates as follows:

The inverting terminal of both operational amplifiers is at virtual ground. There-

fore, on the positive cycle of the incoming signal, current passes through resistor R, to

the inverting input of the first operational amplifier. This current is unable to enter the

operational amplifier because of its extremely large input impedance: nor can it pass

through diode D2 , since that diode will only pass current in the other direction. Con-

sequently, it passes through resistor R2. At point a, the voltage is the negative of the

input voltage. The same amount of current flows through resistor R. Resistor R, has

only half the resistance of R3 , so it draws twice the current that resistor R, can supply.

The balance comes through resistor R. This causes the output of the second operational

amplifier to match that of the input to the circuit. So during the positive cycle of the

input, the input voltage is duplicated at the output.

On the negative cycle, the two diodes serve to keep the voltage at point a at ground

potential. This eliminates all current through resistors R, and R. The eflect is the same

as if the first operational amplifier were removed entirely. The second operational am-

plifier is then in the usual configuration for inverting. The inverse of the negative input

signal is, of course, a positive signal.

33

FULL-WAVE RECTIFIER
R3

R2 a 0

S;O25Ko 5GKg
of R4

3 VPP AC Ri
SIGNAL IN,6 r RECTIFIE D

50QI S CI AL

LF444 LF444 OUT

Figure 12. Full-isave rectifier.

In summary, whether the input is positive or negative, the output is the absolute

value of the input.

G. LOW-PASS FILTER

The signal out of the rectifier has a fundamental frequency of

2 x 600 1Hz = 1200 1lz and this is superimposed on a DC voltage derived as follows:

v(t) V "sin(2itft) (5
= sin()(25)

34

Generalized Second-Order
Low-pass Filter Using One OPAMP

1 2 C,

R IN1

a
Am

UT

1 R 2

Figure 13. A general second-order, single operational amplifier, Im-pass filter.

35

SECO1"D-ORDER
LOW-PAES$ FILTER

CUTOFF FREOUENCY 5 Hz

470 N F

_ _MJ 13 4
- 1 12 AVERAGE

R ECT I F IE D
SIFGNAL 10fK 1 /4 SIGNAL

LF444 LEVEL
L

U-

z

Figure 14. Second-order, low1-pass filter.

T

2V

= .2 j 2 V sin(coi)dt

7-
21 cos*z) 2]

- I c[V -L) (26

4V
S7"

4 V
12 Rf
41'
2?r
2 V

36

The signal into the filter has a peak amplitude of 1.5 V. Application of this formula

gives V, = 0.955 V. This is the amplitude of the strongest signal we expect to receive

from the Auxiliary Power Unit.

The low-pass filter which follows the rectifier is designed to have a cut-off frequency

off, = 5 Hz. This frequency is well below the fundamental frequency of 1200 Hz passed

by the rectifier. As a consequence, only the average signal V', we have just derived will

be present at the output.

The circuit is based on the general circuit shown in Figure 13 on page 35. The de-

sign equations for this circuit are derived in APPENDIX A. Derivation of Design

Equations for the Matched Filter on page 72 and are reproduced here.

C, = 4C2Q2 (27)

R, = R 2 = R = (28)
oop,'VC1 C2

In this application, we are not concerned with the phase of the signal. Therefore it is

reasonable to seek a maximally flat transfer function. To do this, we implement a

second-order Butterworth filter, for which

*1 QP - _ 0.707.

Given our nominal cut-off frequency f, = 5 Hz, we arbitrarily choose C, = 220 nF. We

get C = 440 nF, and R = 102.3 kL2. Since the cut-off frequency is not critical, we can

pick the more convenient component values C, = 470 nF and R = 100 k.Q. The resultant

cut-off frequency is f, = 4.9 Hz and Q, = 0.731. Since the purpose of this low-pass filter

is to find the average of the rectified 600 Hz tone, this deviation from the design pa-

rameters is quite acceptable as the cut-off frequency still is well below the fundamental

frequency of 1200 Hz created by full-wave rectification of the 600 Hz tone.

The chief benefit provided by this filter is a roll-off of 40 dB,'decade when

f>f = 4.9 Hz. This amounts to 96 dB attenuation when f= 1200 Hz, which is ample

to suppress the AC component in the signal out of the full-wave rectifier. Figure 14 on

page 36 shows the component choices and circuit for the second-order low-pass filter.

37

THRESHOLD
DETECTOR

AVERAGE

SIGNAL LEVEL
PEAK - 0. 955V

" l2 LM L 3 5 8 HIG HEN I.m NPUT

I170mV 3 .L 1 EXC E EDS 170fV

"' WILL DETECT SIGNALS
NO MORE THAN

.- 15 dB BELOW @.9g55V

Figure 15. Threshold de~ector.

H. THRESHIOLD DETECTOR

Figure 15 on page 38 shows tihe design of a threshold detector. There is sorne evi-

dence that other sources o[" 600 I Iz signals that might be present simultaneously will be

15 dB below this. The voltag-e which is 1.5 dB below 0.955 V is 0.170 V. Any signal

which exceeds the 0.170 V threshold just derived should cause the threshold detector to

signal that a sufficiently strong 600 1lIz signal is present. Presumably this signal is froin

the Auxiliary Power Unit. The threshold detector uses an LMN.358 operational amplifier.

This device requires only a single power supply and it tends not to "latch up- wheni

configured as a comparator. Its output goes high (to 5 V) whenever the threshold is

exceeded. Otherwise, its output is held low (at ground).

1. RESETITABLE PULSE COUNTER

Figure 16 on page 39 sihows the Resettable Pulse Counter. Its purpose is to signal

the presence of a 600 1 lz signal from the Auxiliary Power Unit if it has been contin-

uously present for 73.1s. Spurious signals with a component at f -- 600 Ilz may be

present intermittently. We do not expect them to be continuously present at levels more

than 15 dB below that of the strongest signal expected from the Auxiliary Power Unit.

38

i • • a•

RESETTABLE PULSE COUNTER

HIGH IF 600 HZ

+5V SIGNAL IS PRESENT
1b FOR 73. 1 S OR MORE

N C 1 0 d COa 0
NC 0c CN C -L 0 b B 4

N C _ 0o A3 1

I_ C L LD --

HIGH WHEN 74HC161

600 Hz SIGNAL

PRESENT EP ET CLK

PULSE TRAIN WITH
PERIOD = 4 71 S

Figure 16. Resettable Pulse Counter: Ihis circuit decides that the APUs are on

if it gets a signal from the threshold detector fbr 73.1 s.

Consequently, the Resettable Pulse Counter has the cect of eliminating False triggering

due to these spurious signals.

Whenever the threshold detector indicates the presence of the 600 1 lz tone charac-

teristic of the Auxiliary Power Unit, it produces a high output. This signal is applied to

the LOAD(L) input of the Resettable Pulse Counter. This permits the counter to begin

marking off the pulses which arrive from the Pulse Generator, described below. Because

the pre-load inputs A through D all are connected to ground, the counter will count from

zero to 15, at which point its CO output will go high. Thus, the counter will permit

sixteen pulses to arrive from the Pulse Generator befbre it goes high. Since the period

of these pulses is T = 4.57 s, the output will go high if 14 x 4.57 s - 73.1 s elapses.

39

Configuration of an LM555 Timer
for Astable Operation

4 8 RA

v6
-1 aB

VOU T 3.- 1

IInT

Figure 17. Astable operation of (lie LNI555 Titer to generate a pullse trainl.

J. PULSE GENERATOR

This module is based oil the LN1555 Timer integrated circuit. The data sheet [br this

circuit provides equations to permit choosig component values to provide tihe desired

period and duty cycle. 'File duty cycle is not critical to this application. Figure 17 oil•

page 40 shows the general configuration for astable operation, N hich is tihe mode of -

operation which produces a periodic signal. The design equations are:

tcharge 0.693(Ra + R)C (30)

tdjscjarg, =- 0.693RHC. (31)

Thus the total period

T = tchae + tAarg ae = 0.693(R A + 2 R8)C. (32)

40)

• • a I a i i i7

PULSE GENERATOR

+5V 4 5V

4

R

C1T R 2
6 THRPULSE TRAIN WITH

3 ~PERIOD 4. 71 S

Figure 18. Pulse Generator.

Solving for C wve get

CT A I & (33)
0.69 3(RA + 2RB)C

and the duty cycle

D Rn (34)
RA + 2R8

Picking RA - R, 200 Kil provides a duty cycle D = 0.333 , which is perfectly accepta-

ble for this non-critical parameter.

Figure 18 shows a Pulse Generator based on this configuration. 1 his circuit

produces a regular stream of square pulses of period 7*= 4.57 s. These are used by the

Resettable Pulse Counter to measure the amount of time when a reasonably strong 600)

Ilz signal is present.

41

K. SUMMARY
This completes the description of the somewhat inappropriately named matched fil-

ter. Simulation of the bandpass filter used in the matched filter has shown that that part

of the design is correct and feasible. The implementation and testing of the bandpass
filter and the other components of the entire circuit remain to be done in the future.

42

IV. DESIGN OF THE CONTROL SOFTWARE

In describing the software which operates the controller hardware, we shall adopt

the following conventions.

We will show variable names in bold, e.g., variable; function names in bold with

(possibly empty) parentheses at the end,12 e.g., functiono, and constants in uppercase,

e.g., CONSTANT.13 We shall also use bold for the names of regions, described below in

Section A. Memory Map. Development of the software for the Vibro-acoustic Exper-

iment was done under the Microsoft Disk Operating System (iS. DOS). Figure 35 on

page 89 shows how we arranged the hierarchy of files containing the source code, object

code, header files, etc. See APPENDIX D. HIERARCHICAL ORGANIZATION

OF SOFTWARE FILES on page 88 for a more complete discussion of this organiza-

tion.

A. MEMORY MAP

Figure 19 on page 44 shows the addresses of the RONI and RAM in the computer.

Our NSCS00-based controller provides for up to eight EPROMs and RA.Ms in any

combination, each holding 8 KBytes. The wiring of the printed circuit board permits

placing a RANI chip in any of the addresses evenly divisible by 0x2000 (e.g., 0xO000,

0x2000, 0x4000, etc.) The addition of a jumper wire permits the RAM chip to be re-

placed by an EPROM, i.

The NSC800 uses the same architecture as the Z-80 [Ref. 101. Because the Z-80

architecture causes execution to begin at address OxOOOO whenever power is applied, it

is necessary to install an EPROM at location 0x0000. It was therefore convenient for

us to put all EPROMs at the low end of memory, and all RANIs at the high end. AP-

PENDIX C. HOW THE UNIWARE SOFTWARE USES THE COMPUTER

MEMORY on page 86 explains the way in which the Uniware C Compiler employs the

memory.

12 According to custom in the C programming language.

13 In C. constants are declared using the #define directive. These are stored in various header
files such as vibro.h.

43

Memory Memory Memory
Address Type Usage

OxO000 reset
ROM

0x2000 code
ROM

const
0x4000

ROM
string

0x6000
ROM data

0x8000

0xaOOO
NOT IN USE

Oxc000

OxeOO data & ram
RAM mbrkram

stack

Figure 19. Memory nmap of the compu(er: This figure shows tile locations of

ROM, RAM, and the eight soltiware regions. TIhe ROM and RAM

addresses are specified by the hardware design. The addresses of the

regions are spccified by the linker.

44

B. OPERATION OF THE VIBRO-ACOUSTIC EXPERIMIENT
1. NMenu-driven Diagnostic Program

Some years ago tile fil 41,:.n was prcoduced. As a part of, Elie publicitv cam-
paign attending its release was the slogan, "In space, no one can hear you scream."
Similarly, when the Vibro-acoustic Experiment is performed in the Space Shuttle, there
wvill be no one to hear it scream, that is, to monitor the progress of the experiment.

This ;s qte different, from the situti~on on ti'e crcu'.. . Nv:er,- generally. there
i s a munitor attached, and there is someone monitoring execution of' the program.
Furthermore, there is a need on the ground to test components of the experimental
package without running the experiment from start to finish. For example, we have
found it helpful to be able to operate the bubble memory module attached to tile con-
trlier ha;ar n a n.-nual nio~e, Bv: this Mearls, we have UMehL-u the software and
ens'urecd t!hat it can c-erate the buh'meniory saccessfutilvy before attciripting t-, use it

in our i,,,-Ication.

An)obvioUls wav to allow softwarc to be tested on the grou~nd bUt used to run
the. exImn inSpace wvould. be to cnmjpile a dUerent programn for eachi 1-urpc e. This

'Cs :o ;ut it 'il!v. a vc :onvenC~l ient op proa,.h. 'Not only must two Isic porm

be nnae.but assuraice that thie -1amnostic versioni works ci;ves little assuranice, that
thez ca~aaione v'al ;vcrk-. 'We have_ Ceeced to haea siie nL rmt'ole unrI~

.1an E.-s requires 1tha h rcgram be oh1 ' to recocze thtsnnoee

in ;it. To dIo ~i : "iM L~~. it 3of' port Cto see it a 'IS~m is co-

~ !vtCr-.*.C' Z' z r......... a ; ':s

...........

r, i n

IIL

3. Power subsystem control. Individual subsystems can be powered up or down under
the user's control.

4. Bubble memory control. The bubble memory used for storing a log of events per-
formed during the experiment can be powered up or down, initialized, or tested
under the user's control. These tests are at a ver" low level. Data stored in the
bubble memory consists of character strings, and these are unformatted. The data
are not treated as formatted log entries.14

5. Analog-to-Digital (AID) converter control. Any of the temperatures and voltages
accessible through a channel of the on-board AD converter can be read under the
user's control.

6. Running the experiment. This causes the Vibro-acoustic experiment to be per-
formed. The only difference between operating the experiment under menu control
and operating it with no terminal attached is that with a terninal, a large amount
of diagnostic information is displayed during execution. Wit/tout a terminal at-
tached. this information is lost. The advantage to this approach is that if the ex-
periment works on the ground, we are assured it will work in space, since essentially
the same code is executed in both cases.

7. Perform port input and output. This is a very low-level test. Characters ofdata can
be written to or read from a port at any address, one at a time. This is helpful in
debugging the software.

S. Display contents of the controller's memory. This, too, is a very low-lexel routine
useful only for debugging.

9. Examine or change bubble memory. These routines permit the formatted contents
of the bubble memory log to be displayed in a readable manner on the terminal.
In addition to allowing debugging to be done, this operation permits the
experiment's operation to be tailored in advance.

Each of these menu items leads to a fUrther menu of' functions to permit the
operator to test all subsystems of the experiment. These routines are discussed in detail

in the software description contained in Section A. Major Subroutines and Functions

on page 108.

2. Performing the Experiment

This section describes in detail the steps of the experiment. These steps are il-

lustrated in the flowcharts contained in the following pages.

a. Microprocessor Control Program

Flowchart 0 in Figure 20 on page 48 shows the overall structure of the
control program. The program begins executing when power is first applied to the sys-

tem. After initializing the hardware for proper operation, it checks to see whether or

not there is a terminal attached. If not, it proceeds on the footing that it should run the

14 There are additional bubble memories within the Solid State Data Recorder (SSDR) which
are not tested by these routines.

46

experiment, bypassing all the menu routines. If, on the other hand, a terminal is con-

nected, then the program deduces that the experiment is not being run in space, where
no terminal will be available, and so it enters the menu subsystem. The experiment is

not performed unless the user specifically requests this later.
b. Initialize Hardware

Flowchart I in Figure 21 on page 49 is a more detailed look at block I of

Flowchart 0 in Figure 20 on page 48. The first initialization task to be performed is to

let the programmable input output devices know which data lines are for input and

which are for output. There are two clocks which also must be initialized. One of these

provides a clock signal for serial communications at 9600 baud. The other provides a

clock for conversion of data from analog to digital form.

c. Run the Vibro-acoustic Experiment

Flowchart 2 is shown in Figure 22 on page 50. It is a more detailed lc..k

at block 2 of Flowchart 0 in Figure 20 on page 4S.

One of its first tasks is to initialize certain variables in the software. It then

ascertains (by consulting a record in the bubble memory) whether the full experiment

or the abridged version is to be performed. The full experiment consists of the sweep.

scroll, launch, and post-launch phases already described in Chapter I. INTRODUC-

TION on page 1. [he scroll phase is omitted if the Auxiliary Power Units (APUs) are

not detected before the launch was detected.

In the abridged experiment, the program initially checks to see if the

barometric switches have been triggered, which they would have been were the Space

Shuttle already in space. This check is done to avoid entering record phase a second

time when the space shuttle is already aloft. Such a situation niight arise after a power

fault during lift-off: to recommence recurd mode would erase the acoustic data recorded

during the launch.

The next decision to be made is whether or not to enter record mode.

Conceivably, the Auxiliary Power Units could be detected and the record phase entered

at some point, but the launch might then be scrubbed. If power were not removed from

the experiment, then the control flow would permit record mode to be commenced anew.

Why not just start record mode again? Operating the Solid State Data Recorder with

its bubble memories consumes considerable power. We cannot afford to waste that

power by, in effect, continuously operating the recorder unnecessarily. The decision not

to let this mode be begun again until at least 12 hours after the last time will prevent this

from happening. Also, if a power fault occurred after the record phase began. we would

47

Mletopticeeeot s.

Conltol
Proigrom

Prhltall

Ha,'dwar

N Monitor Y
Conlecte,?

N

y

Processing bcgins here whcn the controller first rcceives power.

prefer to avoid interfering with tile Solid State Data Recorder (SSDR). which might still

be operating successfully in record mode. 1 is safeguard will ensure that such interfer-

ence does not occur. If a mission is scrubbed, it would not be rescheduled for at least

24 hours. The 12 hour wait is long enough to avoid interfering unduly with the SSI)R

and to preclude wasting power and is short enough to permit correct operation when the

lauilch is rescheduled.

Once either the Auxiliary Power Units or any launch indication are de-

tected, record mode can be entered. Normally, upon completion, we expect to be in

space. In this case, control will be passed to the post-launch phase of the mission.

Otherwise, the nission must have been aborted and the 12 hour wait begins.

d. Initialize Software

Flowchart 2.1 in Figure 23 on page 51 is a more detailed look at block 2.1

of Flowchart 2 in Figure 22 on page 50. Initializing the software entails discovering

what the current status of the experiment is. For example, this night be the first time

power has been applied, in which case the swep phase has not been performed yet, and

48

INITIALIZE Ene
HARDWAREC

1

Lin

I,.llal,-S

1116KH

Clock for
9M0 SAUD

UART

Intl1111ZO
S14 4 KH1

AID

Leverlr

Figure 21. Floichart 1: The flowchart shows the initialization of hardware and
software at the very beginning of program execution.

the launch has not taken place. Or perhaps the sweep was performed previously, but the

Space Shuttle still is on the ground. This inlormation was stored previously in the

bubble memory log, and it must be retrieved before the controller can know what it

should do.

The controller also turns off the Voltage Controlled Oscillator for safety

reasons. Because the speaker conncctcd to it emits such a loud tone, it would be dan-

gerous to allow it to operate until the controller can first see whether it has been begun

once before. If NASA eventually agrees to permit the sweep phase to be performed, they

will almost certainly afford us only one opportunity to perform it. If it does not coi-

plete successfully, there is no second chance. The heater subsystem also is deactivated

as a power-saving measure until the controller can find out exactly what to do.

e. Do Sweep

Flowchart 2.2 in Figure 24 on page 52 is a more detailed look at block 2.2

of Flowchart 2 in Figure 22 on page 50. If the sweep phase ever was started before, or

if the launch was performed previously, the siveep phase is skipped. Otherwise the con-

troller notes in the bubble memory log that it has now started the siwer ! , phase. which

49

ARCOUSTIC ms
2txPtRIMEMUT

Sotwe ,.afltl

2.21re?

and the abridge~d esionsorteVboaosiExriet

2.1 0 a

INITIALIZE
SOFTWANE

neeld e~perlmer"t
etstes

from bbe
memoly tog

2.1,1

Hester
Subsystems

are oll
2.1.2

Figure 23. Floisclart 2.1: This flowchart shows the steps entailed in initializing

the software when the experiment is performed.

will ensure that it never tries to restart it. The controller now causes echoes of known

frequencies to be recorded.

The controller expects to be informed of the completion of the sweel, phase.

I Iowever, a 13 minute timeout is initiated to make sure that the controller does not wait

forever for this information.

J: Stat Recording Response at KnownT Frequencies

Flowchart 2.2.2 in Figure 25 on page 53 is a more detailed look at block

2.2.2 of Flowchart 2.2 in Figure 24 on page 52. It shows the steps entailed in initiating

the swee7 , phase. The Analog to Digital Converter Subsystem must be turned on first,

since the converters power the microphones which receive the acoustic signal. The

Voltage Controlled Oscillator (VCO) can then be started, followed by the Solid State

Data Recorder (SSDR). Starting the SSDR requires first applying power to it and then

commanding it to enter sweep mode.

g. Stop Recording Response at Known Frequencies
Flowchart 2.2.4 in Figure 26 on page 54 is a more detailed look at block

2.2.4 of Flowchart 2.2 in Figure 24 on page 52. It shows the steps entailed in terni-

nating the sweep phase. These steps are to remove power from three subsystems: the

Voltage Controlled Oscillator (VCO), the Solid State Data Recorder (SSDR) and the

Analog to Digital (A,'D) Converter.

51

DO Enter
SWEEP 2.2

9v6EEP
SIAM ED y

at LAUNrH
COF

N

STAnTEO

2.2 1

i

flucotding
fl-spoftn. cii K.ot".

Start

13 minute
time
out

223

2 2 3

N Tlrnd
Ou 1

fl.cod,,g
Rn.spono I

Known
Frequenele

2 2.4

Figure 24. Fiowchart 2.2: This flowchart shows the steps entailcd in performing
the sweep phase of the experiment.

52

START RCCORDING Er~
RESPONSE AT 2

KNOWN FREOUENCIES

Turn
AMD

Con ye 'to
Subaystems

On

Controlled
oscillator
(VCO) on

2.2.2.2

Turn Solid
Slt.t Data
Recorder
(SD~t) rrt

2 2.2 4

(:22a

Figure 25. Flowchart 2.2.2: This flowchart shows the steps entailed in initiatig
the recordinig of' known frequencies during the sweep phiase of thc ex-
perimient.

h,. itfor APUs to St art or for Launch Indications

Flowchart 2.3 in 17igure 27 onl page 55 is a more detailed look at block 2.3

of F7lowvchart 2 in Figure 22 onl page 50. Tlhere arc two possible indications of',i launich.

One is a signal from thle Vibration-activated Launch Detector circuit. The other is a

signal firom the barometric switches. If either of these is present, thle flag LAUNCH ED

is asserted. Othervise, the controller will check to see if the Auxiliary Power Units

(Al'Us) have been detected. If so, the flag AIUs ON is asserted. If no indications are

present, the controller will continue looking for them indefinitcly.

i. Do Scroll

* Flowchart 2.4 in Figure 28 onl page 56 is a more detailed look at block 2.4

of Flowchart 2 iAn Figure 22 onl page 50. It shows the steps entailed in performing the

53

STOP RECOROINO
RESPONSE AT

KNOWN FMEOUENCIES

Turn VONtaq0
ConhoWed
Ocffltor
vCO, onf

22.4.1

Turn %ofld
Sl$t. [nla
FleCorder

(Ssok) off
2 2 4.2

T-Irm A'O
Convorlors

2243

Figure 26. Floischart 2.2.4: This flowchart shows the steps entailed in stopping

the recording of known frequencies during the .sweep phase of the ex-

perinient.

scroll phase. Power is applied to the Solid State Data Recorder (SSDR), and it is then

commanded to enter scroll mode.

The mission will be scrubbed if no launch occurs within seven minutes after

the Auxiliary Power Units are started. We initiate a ten minute timeout, which is con-

servative. If at the end of ten minutes no launch indications have been detected, the

program aborts; otherwise, it asserts the LAUNCHED flag.

j. Abort

Flowchart 2.4.4 in Figure 29 on page 57 is a more detailed look at block

2.4.4 of Flowchart 2.4 in Figure 28 on page 56. It shows that when the mission is

deemed to have been aborted, power is removed fiom all subsystems.

k. Do La,nch

Flowchart 2.5 in Figure 30 on page 58 is a more detailed look at block 2.5

of Flowchart 2 in Figure 22 on page 50. The flowchart shows the steps entailed in

performing the launch phase of the experiment. The first step is to determine whether

54

WAIT FOR

APUI TO 2
START OR

FOR LAUNCH
INOICATIONS

N

Auxillor Assort
Power LAUICEO
Unfle

|APU9) 2.3.1
on?

Y

APU,0ON

2.3.2

Leave
23

Figure 27. Floichart 2.3: This flowchart shows the steps entailed in listening for

the Auxiliary Power Units (APl'Us) while simultaneously waiting for in-

dications of a launch.

this is necessary or not. If the launch was ever determined to have been completed in

the past, the LAUNCH DONE will have been asserted then. In this case, it is not ap-

propriate to perform this phase a second time and so all the blocks in this flowchart will

be skipped. Otherwise, the Solid State Data Recorder (SSDR) is counanded to leave

scroll mode and enter launch mode. Within two ninutes of the time of launch, there will

no longer be any air in the Space Shuttle's cargo bay. We initiate a three minute timeout

so that, in the event that the SSDR fails to signal completion of the launch phase, the

controller will not be stuck permanently in launch mode. The controller repeatedly

checks either for a completion signal from the SSDR or for a timeout.

I. Check for a Completed Lamich

Flowchart 2.5.3 in Figure 31 on page 59 is a more detailed look at block

2.5.3 of Flowchart 2.5 in Figure 30 on page 58. If the LAIINCH DONE flag ever was

55

Enter
00 SCROLL 2.4

Turn Solid

Stle Onto

(SSC)OMn
r.4.1

recordintg
pro-launchr

ambient
no"~

2.4.2

Z.4.3

assetedthisbloc doenoting. Assoere, 2fti.lgws o rvosy setd4h

stteofth broeticprssreswtcesischckd.Ifeihe o temha tiped w

have~~~~~~~~~~ a oiieidcto f nh T ismtend prpit osc h AN DN
flag.?

56

N-

power fromf

2.4.4.1

Figure 29. Flosichart 2.4.4: This flowchart shows what happens when an abort

condition is detected.

in. Do Post-launch

Flowchart 2.6 in Figure 32 on page 60 is a morc detailed look at block 2.6

of Flowchart 2 in Figure 22 on page 50. It shows tile steps entailed in perlfoming

post-launch functions. These are the monitoring functions required after the Space

Shuttle has lefl the earth's atmosphere. The first step is to remove power firom all sub-

systems. A five ninute timeout is then initiated. The effkect of this is to pernit system

status to be recorded every five minutes. 1 he heater subsystem is one of the subsystems

which needs monitoring. A check is done to ensure that the launch has beenl recorded

as complete. These two steps are repeated continually throughout each five minute pe-

riod. At the completion of that period, current values of the temperature and voltage

at various points are read and stored in the bubble memory log. A check also is made

to see if the voltages on the buses are too low. If so, the post-lautlch processing ceases.

n. Mfonitor Heater Subs.rstein Operation

Flowchart 2.6.3 in Figure 33 on page 61 is a more detailed look at block

2.6.3 of Flowchart 2.6 in Figure 32 on page 60. It has two branches. In one, the tem-

perature of the experimental apparatus is sufliciently high, in which case the heater

subsystem is deactivated. In the other branch, the temperature is too low and the heater

subsystem is activated.

o. Do Record

Flowchart 2.7 in Figure 34 on page 62 is a more detailed look at block 2.7

of Flowchart 2 in Figure 22 on page 50. It shows the steps entailed in putting the ex-

periment into the record phase. Ihese steps are, first, to put the Solid State Data Re-

57

00 LAtMN 2.1

Asserted?

Put solid SeaII
Dat 11afor
(SSOfl) ito

LIARICJ4 modo

Start
time-ut

2.S.21

for a
Comipleted

24.3

C.nMpead
LAV"~)

Modal7

N

N Timead
out?

Y

Figure 30. Fliicliart 2.5: This flowchart shows the steps entailed in pierforming
thle launch phase of the experiment.

corder (SSDR) into the launch mode, and then to begin a 20 mzinute timecout, after which

time the SSDR would have run out of nicmiorv in which to store recorded sound. Tlhe

SSDR normally would inform the controller that it has completed operation before the

timeout occurs. The timeout is meant to permit the controller to leave the record phase

even if the SSDR fails to signal completion.

58

CHECK FOR Enter
A COMPLETED

LAUNCH

LANCH

Assered?

y SBt@,ttstrt

laSwitch

Tripped?

V

$soert

5 2 5.3.1

Figure 31. Floitclart 2.5.3: This flowchart shows the steps entailed in deciding
whether or not a launch has occurred. The barometric switch is

deemed to be the most reliable (and only convincing) indication of a
launch.

95

00 POST-LAUeH Einter

26

power from

2.6.1
t

S miruie

s Illlto-Ois

2.6.2

Mo"ito
1, 0'

Subs yimr

2.6.3

for

25.

N Ttn~od
out?

y

Rteord

60.

iAy

Figure 32. Floichart 2.6: This flowchart shows the steps entailed in performing
measurements and monitoring temperatures and voltages after the ex-

periment is complete.

60

PAOMITOR i .
IiEATER 2 C

SUBSYs T EM
OPEFIATIOt•

N y

Turm Turn

h- hell.,

off
?63 2632

*Figure 33. Floiidhart 2.6.3: Ibhis flowvchart shows the .steps cntailed in monitor-

ing the tcmlpcratures or the bulbic memory unit and maintaining that
tcmperature above I2C.

aT

61

DO RIECORD 2

Put ssoA
Into

"We@
2 7.1

Start
20

minulo

2712

2.5 3

smon

N

N TIm.d
Out'7

2 7

Figure 34. Floischart 2.7: This flowchart shows the steps entailed in pcrfbrming

the record phase of the abridgecd expcrimcnt.

62

V. HOW TO GET THE EXPERIMENT READY FOR A LAUNCH

This chapter explains what must be done prior to the launch of the Space Shuttle

to ensure that the experiment is performed correctly. The current status of the exper-

iment is stored in page 0 of the bubble memory log. By setting appropriate information

there, we can ensure that when power next is applied to the experimental apparatus, the

correct sequence of steps is performed.

There are really two possible experiments to be performed: the unabridged exper-

iment and the abridged one. The abridged experiment dispenses with the sweep, scroll,

and launch phases of the experiment, replacing them with a single record phase. Which

of these is to be run must be stored in page 0 before launch.

A. UNABRIDGED EXPERIMENT

Attach a terminal to the RS-232C interface and apply power to the experiment. The

controller will present the following menu on the terminal.

A Software reset.

B Realtime clock functions.

C Power relay switching functions.

D Bubble memory test functions.

E A/D converter functions.

F Run experiment.

G Perform port I/0.

H Display contents of controller memory.

I Examine or change the data logged in the bubble memory.

Z Exit this menu.

Choose option (1). The following menu will be presented next.

A Display page 0.

B Display a page of the log.

C Alter the contents of page 0.

Z Exit this menu.

Choose option (C). The following menu will next be displayed.

63

A Toggle 'sweepstarted' flag from TRUE to FALSE.

B Toggle 'launchdone' flag from TRUE to FALSE.

C Alter value of next available page from 0x12 = 18.

D Alter value of next available half page from 1 to 0.

E Toggle 'fullexperiment' flag from TRUE to FALSE.

F Specify the 'RECORDstart_time' (make this at least 12 hours before the

present to permit RECORD L ,de to be initiated.)

Z Exit this menu.

The menu may not look exactly like this, inasmuch as the flags and page numbers may

vary. The objective, however, is to set the sweepstarted flag to FALSE; the launchdone

flag to FALSE; the value of the next available page to 1; the value of the next available

half-page to 0; the value of the fullexperiment flag to TRUE. The value of the

RECORDstart-time does not matter since the record phase is not performed in the

unabridged experiment. If a value is already correct, it may be left alone. Only if it

needs to be changed must the corresponding menu choice be made.

B. ABRIDGED EXPERIMENT

For the abridged experiment, follow the same steps as with the full experiment with

the following differences. The full experiment flag should be set to FALSE, and the

RECORD start time should be set to some value at least 12 hours before launch. The

value of the siseepstarted flag does not matter because the sweep phase is omitted in the

abridged experiment.

C. BOTH VERSIONS OF THE EXPERIMENT

Once all the required choices have been made. the controller may be shut off and the

terminal should be removed. The next time power is applied, the controller will discover

that no terminal is attached, it will consult the values last stored in page 0 to see what

it should do, and it will perform the experiment according to those values.

64

VI. TESTING OF THE SOFTWARE

Every module of the software has been tested individually for correctness. The in-

tegrated control program also has been tested exhaustively, but because the hardware

has not yet been completely integrated, there is a limit to what could be accomplished.

This chapter discusses how the testing has been performed and suggests further tests to
be done once hardware integration is complete.

The following hardware components have been completed and have been success-
fully operated by the integrated software:

I. Bubble memory for the experiment's log.

2. Terminal.

3. Real Time Clock.

4. On-board Analog-to-digital (A D) converter.

5. Voitage Controlled Oscillator.

6. Power Control Subsystem.

In addition, a preliminary design of the Solid State Data Recorder (SSDR) was tested
by Kuebler [Ref. 9]. His tests included a demonstration that the off-board analog-to-

digital converters associated with the SSDR functioned correctly. that the SSDR prop-
erly stored the acoustical data provided to it by the off-board analog-to-digital

converters, that this data could be retrived from the SSDR. and that an analysis could

then be performed on the data. The final version of the SSDR has not yet been com-

pleted, and in the testing of the software described in this thesis, no attempt has been

made to emulate its performance. However, the controller dutifully sends commands to

it and makes repeated (unsuccessful) attempts to read its status information. It also

notes its inability to get correct responses in the log.

The software has been tested many times under various conditions, both with and
without a terminal attached. A test requires the initialization of flags in page 0 of the

bubble memory log in advance. How to do this is explained in Chapter V. HOW TO

GET THE EXPERIMENT READY FOR A LAUNCH on page 63. There are two

ways to end a test, depending on whether or not a terminal is attached.

1. If there is a terminal attached, pressing CTRL Y will interrupt the experiment and
present the highest level menu in the diagnostic subsystem. The experiment can
be resumed by making choice

65

Z. Exit this menu.

To terminate the experiment completely, make choice

A. Software Reset.

2. If there is no terminal attached, simply remove power from the system. This is, in
fact, how the experiment will be terminated at the end of a space flight (if the bat-
teries last long enough.) Attaching a terminal and applying power will put the
control program into the diagnostic subsystem.

The results of the experiment can be evaluated by making menu choice

I Examine or change the data logged in the bubble memory.

The following is a list of the various conditions under which the experiment has been

tested. The conditions are listed as applying and not applying, where this is meaningful.

All these conditions resulted in satisfactory performance by the controller.

I. Terminal present; terminal absent.

2. Unabridged experiment to be performed; abridged experiment to be performed.

3. Sweep phase previously performed; sweep phase not previously performed.

4. Launch had occurred previously; launch had not occurred previously.

5. Bubble memory space exhausted during test. The controller correctly ceased trying
to store more data and continued to operate normally without logging its actions.
This could not be verified without the terminal attached, for with neither a terminal
nor a bubble memory log, the controller does not generate enough outputs for
proper verification of its performance. There is no reason to suppose that the re-
sults would be different with the terminal removed, however.

6. Temperature out of linits. Operation of the bubble memory ceased. Power was
applied to and removed from the heater subsystem by commands to the power
control subsystem. These commands were issued by the subprogram responsible
for monitoring the heater's operation, namely monitor heaters(. Although the
heater subsystem itself has not vet been completed. the associated power relays
switched correctly.

7. Detection of the Auxiliary Power Units (APUs) by the Matched Filter was and was
not emulated by toggle switch. The controller responded correctly in both cases.

8. Detection of launch by the Vibration-activated Launch Detector was and was not
emulated by toggle switch. The controller responded correctly in both cases.

9. Activation of the Barometric Pressure Switches was and was not emulated by tog-
gle switch. In the absence of activation of the barometric pressure switches, the
presumption is that launch did not occur. The controller responded correctly in
both cases.

10. Power was remoxed abruptly at various points in the procedure and then was re-
stored. Ihe controller recovered in the desired manner.

66

After each test, the contents of the bubble memory log were examined to see what steps

in the experiment had been performed. Two obvious differences were found between the

system's behavior with and without a terminal attached. One of these was that with a

terminal attached, the diagnostic messages issued during the performance of the exper-
iment were visible. The other was that with a terminal attached, the diagnostic subsys-

tem did not get control. No other difference could be found between system behavior

with and without a terminal attached.

There is every reason to believe that the control program will work as well in the

Space Shuttle as it has in the lab. The same tests should be performed again once the

hardware is completely integrated. The only tests which have not already been done are

those associated with the operation of the Solid State Data Recorder (SSDR). The

interface with this device is very simple. The controller sends commands and reads sta-

tus information. The SSDR is otherwise completely independent of the controller. We

have already ascertained that the application of power to the SSDR through the power

control subsystem is done correctly. We have also verified correct response to a failure

ol the SSDR to perform as expected. The only thing we have not tested is the response

of tb' control program to correct responses from the SSDR. Since the response amounts

to making a note of the correct response in the bubble memory log, we do not anticipate

any difficulty in this area. The ability of the controller to send commands to the SSDR

has been tested, although the response of the SSDR to these commands cannot be

evaluated until the final version of the SSDR is complete.

The means of extraction of data from the bubble memory log are not very elaborate

at this point. Data can be extracted for two experiment steps at one time by providing

the number of the page in the bubble memory log whose contents are required. No ca-

pability has been provided for rapid extraction of all data to. say. a microcomputer. This

does not pose a serious problem, but data extraction would be facilitated by providing

subroutines to do it quickly.

67

VII. CONCLUSIONS

The Vibro-acoustic Experiment was the first experiment produced at the Naval

Postgraduate School for inclusion in a Space Shuttle mission. In view of the consider-

able technical hurdles it presented, it is fair to say it has been a very ambitious project.

It has included many disciplines, such as mechanical engineering, thermal engineering,

digital electronics, analog electronics, acoustics, bubble memory technology, auton-

omous computer control, software development, a matched filter for detecting an im-

pending space shuttle launch, power control, and computer-aided design and

manufacturing (CAD, CAM).

This thesis has concerned itself with overall control of the experiment and with a

description of one subsystem, the matched filter. It was not possible to do this without

considering the experiment as a whole. From the author's personal standpoint, this has

been very gratifying. We have used a high-level programming language to do the bulk

of the progranmming of a microprocessor-based controller, thus avoiding the labor-

intensive burden of assembly language coding in most areas of the program. We have

effectively integrated this code with the little assembly code required. We have written

drivers for assorted hardware devices, such as a terminal, a bubble memory module and

a real-time clock, thus demonstrating the close association between hardware and the

software which makes that hardware more than a glorified paper-weight. We have used

structured programming techniques throughout, thus aiding the design process. as well

as the understanding of the documentation represented in part by this thesis. We have

created a conveniently-used software development system, making it straightforward to

edit the source files, compile or assemble them, link the object modules, list source files

on a printer, and place the executable file in EPROM.

This work may benefit others who would like to implement other applications. We

have made it possible for them quickly to get a device controller programmed and op-

erating, since so many standard controller functions already exist. The C programming

language is highly portable, so much of this work would apply even with a new hardware

design, ng, say, a faster microprocessor with more memory.

Two other projects have already benefitted from the work done here. In one, the

experimenters plan to obtain voltage versus current for solar cells in space. In less than

two months, the complete control program for that new application was designed and

68

tested using the same controller and much of the software we have described in this

thesis.

In another project now underway, the author is involved in the experimental evalu-

ation of a thermo-acoustic refrigerator in space. The details of the experimental proce-

dure in both these cases differ, but the overall fundamentals of control of an experiment

are the same. Consequently, much of the software described in this thesis can be used

without any modification.

For anyone who wants to build a controller with modest requirements for speed and

KAM, the controller we have used in the Vibro-acoustic Experiment would be suitable.

By using the work described in this thesis, one can avoid the unpleasant burden of

starting from scratch. The bubble memory module provides a further 500K bytes of

random access, non-volatile memory for whatever purpose night be required.

Work remaining to be done is:

1. Design, build and test an improved controller which would operate with more
memory and greater speed.

2. Convert the existing software to run on the new controller. This would entail re-
placing the start-up code and other machine-dependent assembly code. and re-
compiling the C language source code using a compiler which would generate
machine-language code for the new target machine. Software Development Svs-
tems, Inc.. makes C language cross-compilers which would allow most of the ex-
isting set-up to be preserved intact.

3. Nlodifv the existing bubble memory drivers to permit storage of files. At the mo-
ment, the bubble memory is regarded as a linear list of 64-byte chunks of memory.
Greater usefulness would result from the provision of a file subsystem.

4. Produce a manual for other potential users of the software and hardware that
would make it easy to get new applications up and running quickly. This could be
supplemented by improved routines to facilitate the generation of executable code.
At the moment, these routines are specific to the Vibro-acoustic Experiment in that
the} always look in the subdirectory \vibro\contrlr for the files they need. In gen-
eral, they should permit any bubdirectory to be used to hold the files. The exper-
iment to evaluate solar cell performance used a series of files and subdirectories
whose structure exactly mimicked the set-up described in this thesis, but no rou-
tines have been written to set these files up automatically.

5. Develop or acquire a software maintenance system. Such a system would provide
better management of successive versions of the control program. It would also
include a data dictionary to provide a definition of all variables and functions.
along with a complete cross-reference showing every place these objects were used.
What would the data dictionary gain us? It often happens that in the course of
making changes, we inadvertently affect other parts of a system. The data dic-
tionary would make it possible to find all those places and take appropriate action.

69

Microprocessors have now been in use for just a little over 15 Years. The use of

compiled programs to operate them is an even more recent development, since compiled

programs generally take up more memory space than assembled programs, and abun-

dant memory at low prices is available. There are two distinct advantages to using a

compiler:

1. The code is easier both to write and to understand. This makes it easier to get
applications running, and to modify them later, even if team members change over
a period of time.

2. The code is much faster to create. This often makes the difference between success
and failure, since time can be critical, particularly in an educational environment.

Often these advantages outweigh the disadvantages:

1. The code tends to take more memory.

2. The code tends to execute more slowly.

In the case of the Vibro-acoustic Experiment. these factors were of no great conse-

quence, except as already noted in conjunction with the bubble memory module. We

were forced to use assembly code to operate the bubble memory in order to keep up with

the data transfer rate demanded by it. Had there been an adequate bufl'er in that hard-

ware, this extra effort could have been avoided.

In fact, this last point makes it clear that good hardware design can greatly reduce

the effort (i.e., the costs) associated with software development. It is hard to believe that

the job of implementing a 64-byte buffer in hardware would be much more difficult than

that of implementing a 40-byte buffer. Had Intel done this. we would have been spared

months of development difficulties. during which we did not understand the reason why

the C code did not work.

Finally, the use of a compiled language which is highly portable (in particular a

compiled language such as C) can help protect the investment of time and money in

software which is otherwise threatened as obsolete ha-dware is replaced by improved

hardware. In the software industry, endless conversions from one hardware system to

a new one seem to be a permanent nuisance. The ability to take old programs and make

them work on new hardware simply by recompiling them is attractive.

Another potentially useful step would be to implement the controller software using

Ada, the Department of Defense compiled language now mandated for embedded soft-

ware in all purchased systems. This would have the advantage that Ada programmers

70

are likely to become more and more numerous over time. This would help keep the work

already done both current and useful.

71

APPENDIX A. DERIVATION OF DESIGN EQUATIONS FOR THE

MATCHED FILTER

This appendix presents derivations and proofs of results used elsewhere in this thesis.

A. BIQUADRATIC FILTERS USING TWO OPERATIONAL AMPLIFIERS

Figure 7 on page 27 shows the topology of a generalized biquadratic filter using two

operational amplifiers. This topology is taken from Michael [Ref. 15]. In this figure, Y

denotes an admittance (the reciprocal of an impedance). Michael gives ideal transfer
functions in the s-domain from the node marked V,, to the nodes marked T' , I. and

S'3. We will have occasion to use the first two of these. Since Michael does not provide

derivations for these functions, they are provided below. Note that the term -ideal"

implies the use of operational amplifiers of infinite gain. While no such operational

amplifiers in fact exist, there do exist operational amplifiers of very large gain. and the

approximation is practical in many circumstances, especially at the low frequencies used

in the Vibro-acoustic Experiment (i.e., the 600 ltz tone from the Auxiliary Power init.

For example, the open-loop gain of the LF-444 operational amplifier is more than

60 dB at a frequency f= 600 Hz.

From the Kirkoff current law, and referring to Figure 7 on page 27, we have

12 = 1S + 6 (35)

17 = I, - 14, (36)

I = 13. (37)

We can find the currents I through 1, by applying Ohm's law.

11 = (V1 - V4) Y1 (38)

12 = (V1 - VS) Y2 (39)

13 = (V2 - V4) Y3 (40)

1('4 2 - 1V3) Y4 (41)

!5 =(I 5 - I-) 1'5 (42)

72

16 = VS Y6 (43)

17 = (V v - V3) Y7 (44)

18 = V3 Y8. (45)

By substituting these currents into equations (35) through (37), we obtain the following

three, independent equations.

(V - V" Y2 = (V5 - VV,)Y 5 + V5Y6 (46)

(VIN - V3) 1'7 = V3 Y 8 + (V3 - V2) Y4 (47)

(.'V - 14)1 Y (1 4 - V2) Y3. (48)

Collecting these terms yields

1,5(02 + Ys + YO) = V112 + VI .Y (49)

Vs(1i4 + 1'7 + Y*) = 121, + 1"vY, (50)

T,4(1'1 + Y3) =I Y, + f2 13 (

In an ideal operational amplifier, the inputs have equal voltages, so we can write

V3 = P 4 = V,. Rewriting the equations with V in place of V4 and V, gives

"30('2 + Y5 + Y6) = "1' Y2 + . (52)

V3()4 + 17 + I's) = "2 1'4 + V. 1r7 (53)

V3(Y 1 + Y3) = VI Y1 + V2 1"3. (54)

These equations can be readily solved by placing them in matrix form first.[+ 0 -Y2]V3
Y4 + Y7 + Y -Y 4 0 V2 Y7 VIN . (55)

)YJ + ' 3 - 113 - 'lVJ, Jv

Now interchange the positions of V, and V.

73

[0 Y2 +Y 5 +Y 6 -Y 2 Y

-Y4 Y4+ Y7+Y V3 7 V'v. (56)

- 13 Y1 + Y3 - 1'- -v

Next we move row 3 to the top.

0 Y2 + Ys + Y6 - Y2 V3 Y VLv. (57)

Y4 Y4 + Y7 + Y& 0 7_

Next, multiply row I by Y4, row 3 by Y3, and subtract the latter product from the

former to generate a new row 3.

0 Y2 +- Y5-t- Y6 V- Y,| = I5 ["L%-- (58)0 13 (Y-7 + 8+ 1)+4(Y + 1'3) - 7: 2 13(58

Now multiply row 2 by - (1 + Y. + Is) + Y(Y1 + Y3fl. row 3 by (Y2 + Y + 1).

and subtract the latter product from the former to generate yet another row 3.

).3 1 + Y3 -Y

0 Y2 + 1'5 + Y6 V3

0 0 - Y '4(y + Y5 + Y Y +Y - Y (Y 4 + - + s) + Y4 YI + Y3] I 59

= ~Y5 .'
Y3 Y(Y 2 + Y5 + Y6)- Y5[- Y3(Y4 + Y7+ ys)+ Y4()'i + Y3)]

From row 3, we can see that

vI -Y 3 Y-(2 + YS + 6) - YSE - Y 3(Y 4 + - + YS) + Y4(Y + 6)0)
V. -Y - Y4(Y2 + Ys+ Y6)+ Y2 - Y3(Y4 + Y+ s)+ Y + 4Y (60)

V, - Y3 Y-(Y 2 + Y6)- Y3 Y5 Y-+ Y3Y4 Y5+ Y3 Y Y7 + Y3 Y3 YS - Y) 1 *4 5 - Y3 Y4v 5
-' =

- r1 r,(r5 + 6) - rtr..r4 - Y2Y3r,- r 2Y3Y,- Y2 S3Y, + Y1 Y2 Y4 +).3 (61)

Many terms in the numerator and in the denominator of this expression add to zero,
so the transfer function is

PV1 - Y3 Y(Y2 + Y6) + Y3 Y5 Y8 - 1Y Y '5
- Y 4(1 + Y6) - Y2 3 Y7 - I2'3) (62)

74

Va(s)) Y 4 Y5 + '7(2 + .I) - Y3Y1 8
Yvs) Y 1*4(Y+5 + 6)+ Y2 Y3(Y, + Yg) (63)

.VI(s) . 2(s)
This completes the derivation of 7 .7 To derive the transfer function - we

modify equation (55) by placing the variable V2 in the last position.

[01 4 + 7 + & - Y4 3= YV.. (64)
L -r Y J + Y 3 _ - -V - 0

Proceeding as before, we multiply row 3 by - ', , row 1 by - 1 , and subtract the

former product from the latter to generate a new row 3.

0 Y '4 + Y7 + I's - " ± V)3 2 1 I.21 (65)

Next multiply row 2 by [Y1(Y + Y + Y) - I Y(YI + 13)] , row 3 by (14 + Y, + Y'),

and subtract the latter product from the former to .ied a new row 3.

"Z)' + "S-+ Y6 -0
Y4 + 4 1% + S(66)

0 Y2Y3(4 +Y-7+ Y) +Y 4 '])'+ Y5 16) - Y2 (11 +1,) 66

t YSO 4 + I+ Y) - Y-) YI(2 + Y 5 ± Y6)- }'t + Y3)]

From row 3 we can see that

V2 _ Y1 Y5(Y4 + Y7 +1YS)- YJ Y(Y24+ Y3 + Y6)± + 12 7(YI + Y3)
T, - 2 r (3 + Y, +S) + Y, Y4(Y2 + Y,.+ Y6) - 1 2 14(11 + 1) (67)

As before, many terms in both the numerator and the denominator add to zero, so

*V 2 = Y1 Y5(Y4+ YS) +Y2Y3 Y7 -YI 16Y 7 (8
VI. 2 1'3(07 + 1') + IY'l(Y + '6) (68)

75

It is possible, using the same method illustrated in both these cases, to develop a

transfer function 1 s. We have no use for this particular function in the present
context, however, so the derivation is omitted.

B. HIGH-PASS NOTCH FILTER

The equation of a notch filter is given in equation (6), repeated here.

2 2
S + (:0

F(s- / (6)
S2 + -P\ + 2

Michael [Ref. 151 shows how to use the generalized configuration of Figure 7 on
page 27 to implement this function in the case where o, = w,, which is the case for a

symmetric notch filter. However, he does not show how to implement an asymmetrical
notch filter. in which w,0 #W;.

We can do so by using equation (63) and making the following choices for the

admittances Y1 through Y.

Y1) Ca (69)

= sC, (70)

3 =Cb (71)

Y4 Y5 =G R (72)

R

Y6 0 (73)

Y7 = SCb (74)

_8 =-G (75)

Qp

where we pick

6
G (76)

and

76

Cb [()2]. (77)

Proof

G C°2 + sIC"C,2 _CbG
2

2 + S2CaC

"II C G S"C G
s 2 + G 1 - G

Cb CaCQp

-, -. 78s 2 + G ps+ G
S2 + Ge)~I C,

2 2

s 2 + op S + O 2

WP \ 2

Using resistance values instead of conductance values in equations (76) and (77),

we get

"b - (' z\2 1 (79)

and

77

R (80)

C. LOW-PASS NOTCH FILTER
To get a low-pass notch filter, we use equation (68) and pick admittances as follows:

Yj = YS = Gb (81)

Y2 = Y7 = sC (82)

3= = Ga (83)

Y6 =0 (84)

G
(Sr

where we pick

G
(Q (86)cop -- (6

and

Gb [/0\ - (87)
G-, CO7

78

Proof

* 21 G 2 2G + -Lb +SC Ga
V2 Qp)
V"~ Gb2G a + s2C2G a, + SC GbGa

Qp
2+("Gb)2 +(Gb G

C C GaQp

+ (h- G, +(G=)2

\C [G.Q, (S8)

2 + Gb \S + Gb)2

2+ 2 + 2S + o 1+ p -

Q~p
2 2

S + 0:

S 2 + (O-p)S + C9 2

Converting equations (86) and (87) to use resistances instead of conductances, we

get the design equations

Ra)2-1 (89)

and

RC (90)

79

D. A SECOND-ORDER, LOW-PASS FILTER USING ONLY ONE
OPERATIONAL AMPLIFIER

Figure 14 on page 36 is the schematic of a generalized second-order, low-pass filter.

The general equation of a low-pass biquadratic filter is given by [Ref. 12 : p. 16] as

2Vo(S) (.%
VOW 2+ (91)

This transfer function can be realized by the schematic in Figure 14 on page 36 if
we make the following choices for the components.

1 C R (92)wr-,CIC2RIR2

and

/ C1 RzR 2 ___ jj R(93)
,¢ C2 R 1 + R2 (

Proof

11 = VosC 2 R2 '9 (94)

12 (Va - T'o)sC1 (95)

13 R a =12 + 11 (96)

From equation (94),

Va= Vo[I + sC2R2] (97)

or

Va - Vo = VosC 2R2. (98)

Thus

80

v - v o13 = (V - VO)SCI + a

= Vo[s 2CC 2R2 +sC2]
V1.,- Va (99)

R,
VIv.- VoEI + sC2R2]

R,

We can manipulate this equation to obtain the transfer function.

Vo[s2 CIC 2 RIR, + sC2R 1 + I + sC 2R2] = VIN (100)

- s 2C C2R1 R, + sC2(RI + R2) + I

C1 C 2RIR 2)
[2 (R +R) R,)

s+ CIRIR2 CIC 2R1 R2
2

lp

2 4 CIC RIR 2

s 2
I

C2 ,R + R2 Pr

2

SS 2+ (J + OIP

If we choose R, R, = R, then

co (102)

= R.,C C2

and

I .I (103)

81

To design a filter to provide desired values of co, and Q,, use the design equations
which can easily be derived from the above equations.

I. Pick C2 arbitrarily.

2. Let C, = 4C2Q2.

3. LetR =R2=R=
8 C2

82

APPENDIX B. CHOICE OF A SOFTWARE DEVELOPMENT SYSTEM

A. Z-80 ASSEMBLY LANGUAGE
The Vibro-acoustic Experiment has a fairly long history. Long before the author

became associated with the project, two distinct choices for a software environmentIs
had already been made. Early in the project we used Z-80 assembly language for pro-
gramming the controller. An ALTOS eight-bit microcomputer running under Digital

Research Corporation's Control Program for Microcomputers (CP, M) was available.

It included a Z-80 assembler (M80), a librarian (LIB80) and a linker (L80). However,
the turnover in student personnel is rather high at any educational institution; the Naval
Postgraduate School is no exception. Assembly language is often not the best choice for
a project whose participants do not remain for the life of the project, since assembly

language is not widely known, is not easy to learn, and is highly dependent on the ar-
chitecture of the machine in which the final program is to operate. Many different ar-
chitectures exist, and most machines have unique architectures. Even those who know

how to program with assembly language often are averse to expending the vast amounts
of time required to use it for any but the most trivial programs.

B. CP/M AND TOOLWORKS C

As a consequence of these facts, one of the early participants in the project suc-
cessfully promoted a switch away from Z-80 assembly language to the C programming

language. This high-level language includes powerful operators which make it easy to
manipulate the bits within the bytes of the computer's memory, and so it can do almost
anything that can be done in assembly language. The same ALTOS CP M system

happened to have Toolwork's C compiler on it, and so we used it.
When the author joined the project, little progress had been made in actually writing

the control program. With Captain Frank Mazur, USMC, and Captain Ron Byrnes,
USA, the author wrote much of the control program on the ALTOS under CP, M using

the Toolwork's C compiler.

15 The term software environment refers to the computer, the operating system. the program-
ming language. and all related software and hardware tools used to program a computer. The
c 'nputer on which the development of software is done need not necessarily be the same one as
that in which the completed program will reside and be executed. In the case of the Vibro-acoustic
Experiment, it is not the same computer.

83

Doing so proved to be a frustrating business. The ALTOS was equipped with two

eight-inch, single-sided, single-density, floppy diskette drives. These could contain only

around 250 Kbytes of data. One drive had to contain a copy of the CP M operating

system at nearly all times. The ALTOS was quite slow by present standards; it was not

uncommon for a compilation to take five minutes. Due to the limited disk space avail-

able, the output of the compiler (an 8080 assembly language source filel6) had to be

transferred to another diskette before assembly could proceed. Assembly typically con-

sumed a further five minutes. The library program was quite inconvenient to use, but

once the executable modules had been loaded successfully into a library, linking was

straightforward. This was a comparatively quick two-minute process.

Our EPROM writing program was on an IBM-PC using Microsoft's Disk Operating

System (MS DOS). Furthermore, that machine had only 5 1 4 inch diskettes. So we

took our eight-inch floppies to a Zenith Z-100 that had both sizes of drives. where we

converted the CP M file containing executable code into an MS DOS file on a 5 1 4 inch

diskette.

Finally. we loaded the executable program from the diskette into the

EPROM-writing program and created the firmware.

C. MS/DOS AND UNIWARE C

It should not have taken us too long to tire of this agonizing procedure. In fact, it

was over a year before we began seriously to search for an improvement in the form of

a cross-compiler. We wanted a C-language compiler which would operate on an IBM

PC using MS DOS, and which would generate Z-SO object code. Several were available.

We selected the UniWare C Compiler package from Software Development Systems.

3110 Woodcreek Drive, Downers Grove, IL 60515. This product is a complete software

development system. It includes a C compiler which produces Z-80 assembly code, a

Z-80 assembler, a library manager to store object modules in a single MS DOS library

file, a linker to convert a collection of object modules into an executable file, and a large

collection of utility programs, useful for listing files, converting files from one format to

another, and so on. The compiler implements the complete C language defined by

16 The Toolwork's C compiler generates 8080 assembly language source code. The NSC800
on the controller board can execute Z-80 code, a subset of the NSC800 instruction set, and the 8080
instruction set. which is itself a subset of the Z-80 instruction set. We had an assembler for Z-80
and 8080 code. We needed two Z-80 instructions not available in the 8080 instruction set. So we
embedded Z-80 machine code in the 8080 assembly source created by the C compiler and executed
the resultant module with an NSC800. It really was at least as complicated as it sounds!

84

Kernighan and Ritchie [Ref. 16]. It also includes enhancements similar, but not identi-
cal, to those proposed by the American National Standards Institute (ANSI).

It took a little time to convert from the old to the new system, but the results were

well worth the effort. Because the performance of the IBM System 2 Model 80 on which

we run this system is so much greater than that of the Altos, we are able to generate a

new version of the controller program in much less time. The use of MS DOS also has
provided significant benefits. We have made extensive use of hierarchical file directories

in order to group files in a logical manner. We also use MS DOS batch Files to minimize

the amount of memory work necessary to execute such programs as the compiler and

the linker.

The documentation supplied with the UniWare system [Ref. 171 is excellent. Unlike

most C compilers, this one is not meant to produce executable code running under an

operating system. For this reason, much of the standard library supplied with other C
compilers is not applicable, and is not supplied. In particular, no library functions are
provided to perform disk input or output. However, common output formatting rou-

tines such as printfO are included.

D. GENERATION OF FIRMWARE IN EPROM
We use the Intel program pcpp to load the completely linked program into EPROM.

The UniWare software can create a symbol table showing what should go where. Armed

with this list, one can load, install, and test the new version of the program in short or-

der.

Details on the operation of this program are presented in Section 2. Getting the

Executable Program into EPROM on page 146.

85

APPENDIX C. HOW THE UNIWARE SOFTWARE USES THE
COMPUTER MEMORY

The UniWare software regards memory as comprised of a number of named regions.

The C compiler itself creates five of these [Ref. 17: Compiler section, p.3]. These are the

regions code, string, const, data, and ram. There are three further software regions:

reset, mbrkram, and stack. The purpose of each region is described below. The linker

treats each region as a unit and places its contents in memory in contiguous storage lo-

cations. It decides how to do this based on instructions in the file

\vibro\contrlr\object\spec. The order in which these regions appear in memory is speci-

fied in this file. and reflected both in Figure 19 on page 44. and in the order in which

they are described here.

reset The Z-SO architecture specifies that the program code stored at memor5y
location 00000 be executed whenever the nicroprocessor receives power
or a hardware reset occurs. The reset region contains an appropriate
start-up program. This program does the following:

1. It initializes the stack pointer to 0x0000. Whenever an item is stored in
the stack, the stack pointer is first decremented, Thus. the stack pointer
will initially be decremented to OxfIfl the first location in the stack, and
'ill continue to grow downward in memory from this point.

2. It initializes the interrupt tables in such a manner that, should a spurious
interrupt occur. the control program will restart from the beginning. It
would be preferable to resume execution by simply returning from the
interrupt. This would raise the unacceptable possibility, however, of an
indefinite suspension of the execution of the program if some unpredict-
able cause led to the problem. While restarting has the disadvantage of
totally disrupting matters, its compelling advantage is that execution re-
sumes from a known state, barring a complete catastrophe.

code This region contains all program instructions generated by C and assembly
language source code. It includes code to do the following things:

1. Program variables must be in RAM to be altered. In the C program-
ming language it is possible to assign initial values to these variables at
the time a program is compiled. These values must be placed in
EPROM, since otherwise they would be lost. One of the routines in the
code region is invoked at start-up time to copy initialized variables from
their permanent locations in region data in EPROM into temporary lo-
cations in RAM. Thus in Figure 19 on page 44 region data appears in
two locations, both in EPROM and in RAM.

86

2. The definition of the C programming language specifies that statict 7 and
external1 8 variables which have no initial value specified in their decla-
rations must be initialized by the compiler to the value 0 [Ref 16: p.1981.
One of the routines in the code region is invoked at start-up time to put
zeros in all RAM locations in region ram.

3. Another routine which is invoked at start-up time calls the C program
maino. This is the highest level program in C. It calls subordinate
routines to operate the controller and run the experiment itself.

string Whenever the compiler finds a quoted character string in the source code,
it places it in the string region. Since strings are treated as constants, they
can be kept in EPROM.19

const Variables declared as const are regarded by the compiler as invariant, or
constant, so it is reasonable to place them in EPROM.

data This region contains variables whose initial values were specified at the time
of compilation. These values are placed in EPROM by the linker so that
they will not be lost when power is removed from the controller. However.
variables must be in RAM when the program executes. During the start-up
procedure, they are copied into RAM.

rain This region contains variables whose initial values were not specified at the
time of compilation. These are initialized to 0 at the time the program is
first invoked, as specified in Kernighan and Ritchie [Ref. 16 : p. 198].

mbrkram The UniWare C compiler provides a function mbrk0 to permit a program
to request storage at run time (i.e.. dynamically). The nibrkram region
provides mbrkO with the storage it needs.

stack The program stack is located here, at the top of memory.

The linker ensures that items within a region are stored contiguously. The compiler

decides where to put these partitions in memory by examining a memory map provided

in the specification file \vibro/contrlr\object\spec, listed in Section A. Filename spec on

page 150. The format of this file is described in [Ref. 17: Link Editor Section. p. 7].

The memory map specifies that reset be loaded at address OxO000, that the stack

grow down in memory from address 0xfff, that EPROM is available from addresses

OxOOOO through Ox5flT, and that RAM is available starting from address Oxe000 through

Oxffff.

17 Static variables retain their values even after the program which declared them finishes ex-
ecuting.

18 External variables are declared in some module other than the one in which a program using
these variables is defined.

19 In general. to modify strings a programmer must first place a copy of them into a variable.
Dynamic variables are always located in RAM, since their contents are changeable.

87

APPENDIX D. HIERARCHICAL ORGANIZATION OF SOFTWARE

FILES

All the software to control the Vibro-Acoustic Experiment is located in the file hi-

erarchy illustrated in Figure 35 on page 89. Following is a description of the contents

of each of these subdirectories.

A. SUBDIRECTORY \VIBRO\CONTRLR\HEADERS

This subdirectory contains header files for the C language source code. The header

files allow numeric constants which are used in creating the program to be specified

symbolically. By avoiding the use of "magic" numbers in the source code. the code is

rendered much more readily understood. The header files also contain external declara-

tions of the functions and variables contained within a module. Whenever one module

needs to use the functions or variables of a different module, it can obtain correct dec-

larations of them by including the appropriate header file using the C progranuning

language #include directive.

B. SUBDIRECTORY \VIBRO\CONTRLR\CSOURCE

This subdirectory contains C language source code for the parts of the controller

program written in the C programming language. 20

C. SUBDIRECTORY \VIBRO\CONTRLR\AS1NSOURC

This subdirectory contains Z-80 assembly language source code. A few of the lowest

level routines in the controller software have been written in assembly language, but only

when there was no apparent way to write them in C (e.g.,inputo, outputo), or when the

C compiler couldn't generate code which would execute rapidly enough (e.g., bubreado

and bubwriteo).

D. SUBDIRECTORY \VIBRO\CONTRLR\BATCH

This subdirectory contains a number of MS,'DOS "batch" files. These contain se-

quences of commands which make it easier to compile programs, print listings of the

source code, link object modules, and load executable modules into EPROMs.

20 This comprises most of the controller software.

88

Hierarchical Root
Organization Directory

of Software
FilesVibro-sco us lieFlis vlbro Experiment

Software

Controller
coilr Software

Headers for Source source Batch Assembly Assembly
C Programs Code lor C Coda for command Listings Object

Programs Assembler Fliles Flies
Programs

Figure 35. Hierarchical Organization of Softiie Files: The softwvare files are

grouped into several diffecrent sub-directories to flacilitate finding and

managing theni.

E. SUBDIRECTORY \VIBRO\CONTRLR\ LIST

T his subdirectory contains output listings produced either by the C compiler or by

the Z-80 assernbler21 Those created from C source code include that code in the forni

of commuents to the Z-80 assembler. 'Ilhey are stored in this subdir-ectory only as a

matter of convenience, in order that they not clutter tip the directory listinlg Of the sub-

directories containing the source code.

F. SUBDIRECTORY \VIBRO\CONTRLR\OBJECT

This subdirectory contains object modules produced either by the C compiler or by

the Z-30 assembler. They are stored in this subdirectory only as a matter of convenl-

ience, in order that they not clutter uip the subdirectories containing the source code.

21 Those produced by the C coinpiler are actually assemnbly language listings produced by thle
Z-80 assembler. 'I lie latter is caled by the C compier.

89

This subdirectory also contains the link specification file spec. This file provides the
linker with information needed to decide where the various regions of the program must
be loaded. A number of global variables are set by this file at link time.

For details on how to use a link specification file, see the discussion in
[Ref. 17: Link Editor Section, p. 7].

90

APPENDIX E. SUBROUTINES, IN ALPHABETICAL ORDER BY NAME

Table 8. SUBROUTINE INDEX: This table shows the names of the MS, DOS
files in which each subroutine can be found. Subroutines are listed al-
phabetically by name.

SUBROUTINE SOURCE PURPOSEFILE

ad read(expmnt.c Gets a character of data from the Analog-
adread0__ expmnt_ to-digital (A D) Converter.

Converts a character of raw data from the
adtoint0 expmnt.c Analog-to-digital (A D) Converter into an

integer format with the more meaningful
units of volts or degrees kelvin.
Permits the user to alter the contents of page

alter pageO() expmnt.c 0 of the bubble memory. This is required in
initializing the experiment.

Processes the special characters CTRL S and
CTRL Y when read from the keyboard.
CTRL S is a toggle switch. The first time it

allow ctri-interrupts() inout.c is pressed. the display halts. The second time
it is pressed. the display resumes. Subse-
quently its function alternates between these
two. CTRL Y invokes the diagnostic sub-
system.
Converts an ASCII string representation of

atohO convert.c a hexadecimal byte into the corresponding
hexadecimal byte. For example, the string
"a3" is converted to the byte value Oxa3.
Converts a four-byte ASCII string repres-
enting a two-byte hexadecimal word into the

atohexintO convert.c corresponding hexadecimal word. For ex-
ample, the string "a34b" is converted to the
word Oxa34b.
Converts a string representing a decimal in-

atoiO convert.c teger into the corresponding integer. This
subroutine is from Bilofsky [Ref. 18].

This routine is used in the abridged exper-
iment to prevent record mode from being re-

badjideatorecordo expmnt.c started after a power fault. Without this
safeguard, perfectly good data recorded dur-
ing launch might be erased.

91

Checks to see if the barometric switches have
bare..switch0 expmnt.c been activated yet. If so, launch must have

occurred and an appropriate log entry is
made.

Converts a BCD byte to the corresponding
bcd-asco convert.c character string representation. For exam-

ple, 0x17 is converted to "17".

bcd into convert.c Converts a one-byte BCD number to integer
__d.._ntO__one____ format.

Loads the five parametric registers in the
bubble memory controller. Most of these
never change. Two, however, do change of-
ten. These two specify the page of bubble

bpageset0 bubble.c memory where transfers of data begin. Call
this function prior to any operation per-
forming input from or output to the bubble
memory to ensure the parameters are cor-
rectly specified.

Displays a menu of low-level bubble memory
bubcmidienu0 bubble.c controller commands. These are useful intesting the bubble memory for proper oper-

ation.

Initializes the bubble memory prior to its

bubinit0 bubble.c being used. This initialization must always
be done after power is applied and before
input and output operations begin.

bubioO bubble.c Performs input from and output to the bub-
ble memory.

Provides a menu of functions permitting the
user to perform operations with the bubble
memory. These operations include:

1. applying and removing power,

bubmenuO bubble.c 2. initialization,

3. input,

4. output and

5. reading

the status of the bubble memory.
bub.off0 bubble.c Removes power from the bubble memory.

bub.on0 bubble.c Applies power to the bubble memory.

92

Takes care of the actual transfer of data from
the bubble memory to the controller memory
during a read. This routine was written in

bubread0 bubrw.s assembly language in order to achieve a data
transfer rate of 16 K bytes per second im-
posed by the bubble memory hardware.

Takes care of the actual transfer of data to
the bubble memory from the controller
memory during a write. This routine was

bubwriteo bubrw.s written in assembly language in order to
achieve a data transfer rate of 16 K bytes per
second imposed by the bubble memory
hardware.
Part of the sequence of steps necessary to
initialize the bubble memory entails trans-
ferring the byte Oxff to the bubble memory

bubxferO bubrns.s 40 times. This routine does this. The rou-
tine is written in assembly language for
speed. but is called in the same manner as a
C routine.
Checks to see whether or not there is a ter-

checkprtO expmnt.c minal connected to the RS-232C serial inter-
face port.
Dates and times in the real time clock are
stored in BCD format. This routine converts

clockint0 clock.c them to integer format to make it convenient
to perform arithmetic with them. Thus, fu-
ture dates and times can be computed.

clockreadO clock.c Reads the current date and time from thereal time clock.

clockcompareO clock.c Compares two clock times to see which one
is later than the other.
Sets the current date and time in the real

clocksetO clock.c time clock according to values specified by
the user.

Adds two dates and times together to
produce a new date and time. In practice,

clocksumO cIoclkc one uses this to calculate a future date and
time from the current date and time and
some desired delay (e.g.. 15 minutes).

Returns the value TRUE if the bubble
colderjthanO expmnt.c memory's temperature is below the temper-

ature given in the argument to the function,
FALSE otherwise.

Converts a single character to its
ctoho convert.c hexadecimal ASCII string representation.

For example. Oxa3 is converted to "a".

93

Provides a software-driven time delay in in-
crements of 10 ms. Written in assembly

delayO delay.s language, but used like a C language routine.
Adapted from a program by Mr. David
Rigmaiden of the Naval Postgraduate
School.

displaypageO() expmnt.c Displays the contents of page 0 in a readable
format.

Displays the contents of any page in the

displaydatajpageO expmnt.c bubble memory in a readable format. It will
not successfully display page 0. Use
displaypageO() for this purpose.

dosweep(expmnt.c Causes the sweep phase of the experiment to
be performed.

dump) inout.c Produces a hexadecimal and ASCII dump
of any desired region of memory.

dump clockO clock.c Display the date and time on the terminal.

Display the date and time on the terminal.
dump iclockO clock.c This differs from dump clockO in that thedates and times it uses are integers, not Bi-

nary Coded Decimal (BCD rumbers.

echo() inout.c Sends a single character to the terminal.

expmnto expmnnt.c Causes the Vibro-acoustic Experiment to be
expmntOexpmt _ performed.

The UNIWARE compiler provides the
standard C output routine printf() to provide
output to the standard output device. How-
ever. this routine requires the user to provide
a routine fputc() to handle the output of a
single character to any arbitrary device. We

fputcO fputc.c only support output by fputc() to the
RS-232C terminal, so this routine is specific
to that device. The routine will not output
a character if, upon checking. it finds there
is no terminal attached to the serial interface
port. Thus, when the experiment is operat-
ing, calls to printfO are of no effect unless
there is a terninal connected.

Inputs a string representation of a two-digit
gethexO inout.c hexadecimal number from the terminal andconverts it to hexadecimal format. For ex-

ample, "3a" is converted to Ox3a.

Gets a four-digit hexadecimal number in

gethexint() lnout.c string format from the terminal and converts
it to a hexadecimal word. For example,
"3ab2" is converted to Ox3ab2.

94

Inputs a string representation of a decimal
getint0 inout.c integer from the terminal and converts it to

integer format. For example, "352" is con-

verted to 352.
getpageno0 inout.c Asks the user for a page number in bubble

memory.

getjtime0 clock.c Obtain a valid date and time from the user.

inithardisware(initial.c Initializes the six ports on NSC810A ;1 and
nt a 2.

Inputs a character from a port. Written in
inputo newio.s assembly language, but used like a C lan-

guage routine.

int bcd(convert.c Converts an integer in the range 0 through
99 to BCD format.

Issues commands to the bubble memory
controller and analyzes the status codes
which result. In many cases, it will attempt
to issue a comnmand repeatedly if there is

issububcmdO bubble.c some failure, doing this up to a specified
number of times. This routine is written in
C and is not fast enough to handle the read
and write commands. Use bubreadO and
bubisrite() for these.

Converts an integer to an ASCII string rep-
itoaO convert.c resentation. This subroutine is from Bilofsky

[Ref. ISI.

Listens for the Auxiliary Power Units
(:\PUs) to be activated. It also monitors the
Vibration-activated Launch Detector and

listen() expmnt.c the Barometric Pressure Switches to see if a
launch has occurred without detection of the
activation of the APUs.

logevent() expmnt.c Makes entries into the event log stored in the
bubble memory.

Displays a menu to provide for conveniently

logmenuO expmnt.c changing the contents of bubble memory.
This is essential for properly initiating the
experiment.

This program can see whether a character
look.aheadO inout.c has been input from the keyboard without

disturbing the input buffer.

First C language subroutine to get control

mainO main.c after start-up. Decides whether to invoke
the menu-driven diagnostic routines or to
run the Vibro-acoustic Experiment.

95

Implements the C language standard library
mbrk() mbrk~s function mbrkO. This funct Ion was provided

_________________ ___________with the Uniware C Compiler.

Asks the user for an address in memory and
the number of bytes he wants to see dis-

memorydumipO main.c played. It then prov'ides a hexadecimal and
ASCII display of the contents of the selected

_________________________area of memory on the terminal.

Displays the first in a hierarchy of menus
menuo main.c permitting the user to test subsystems of the

________________ __________Vibro-acoustic Experiment individually.

Operates the heaters if the temperature of
monior..heaersO expmt~c the bubble memory is too cold. If the tem-monior-eatrso xpmt~c perature is too hot, it shuts the heaters off.

__________________ ____________Otherwise it leaves the heaters alone.

Outputs a byte to a port. Written in assem-
output() new io.s bly language. but used like a C language

rouitine.
portdumnp(inout.c Outputs a string to the terminal.

Conducts routine monitoring of events upon
the completion of the Vibro-acoustic Exper-
iment. These functions continue until the

post launch() expmnt.c Space Shuttle returns to earth, or until the
10V bus no longer carries sufficient voltage
for safe operation of the bubble memories.
In the latter case, the experiment stops all

___________________operations.

poiser,,status() powier.c Inputs the one-byte status code from the
______________________power relay subsystem.

power,,yrite() pois er.c Sends a one-byte command code to the
___________________power relay subsystem.

A menu program which let's the user read
pisrcnt() poiser.c the status code from the powver relay subsys-

temn or send commands to it.

rdstatrego bubble.c Reads the status register of the bubble
_________________memory controller.

recordo expmnt.c Performs the record phase of the abridged
________________ __________ experiment.

A menu routine allowing the user to set or
rtco clock.c read the clock, and to test the time-out fea-

__________________ ____________ture (see testtimeout() in this table).

rshort-experimento expmnt.c Performs the abridged Vibro-acoustic Ex-
_______________periment.

96

A buffer exists in the controller's memory to
hold a copy of data transferred to or from

shoisbubbuffO bubble.c the bubble memory. This routine displays
the contents of that buffer either in ASCII
characters or hexadecimal.

Converts an event code into an intelligible
show event0 expmnt.c message which it then displays on the termi-

nal.

show waketimeo clock.c Displays the date and time when a time-out
s_____aket______e0 ______will end.

Removes power from any subsystems which
shut downo expmnt.c presently have power. It makes a log entry

for each such case.

Removes power from any subsystems which
shutdoisn_noJog expmnt.c presently have power. It makes no log entry

of its actions.
Issues commands to the Solid State Data

ssdrmode0 expmnt.c Recorder (SSDR) to enter various modes of
operation.
Obtains the status code from the Solid StatessdrstatusO) expmnt.c Data Recorder (SSDR.

termino inout.c Inputs a single character from the terninal.

Asks the user for a hexadecimal port address,
testinput0 inout.c reads that port and displays the data read

from that port.

This routine permits the user to perform in-
testio0) main.c put from and output to any port in the sys-t o mtern. By "port" we mean here an address in

the input and output space.

Asks the user for a hexadecimal port address
testoutput() inout.c and a hexadecimal byte to be sent ko the

port, and sends it there.
A buffer exists in the controller's memory to
hold a copy of data transferred to or from

testpatterno bubble.c the bubble memory. This routine permits
the user to modify the contents of that
buffer.

Lets the user test the time-out feature. For
example, he can request a delay of 15 sec-

testtimeouto clock.c onds. During this delay, the control pro-
gram will not respond to input. At the end
of this period, it will display the current date
and time.

97

In one mode of operation, this function
computes a "wake-up" time based on the

timeoutO clock.c current time and a specified delay. In an-
other mode, it checks to see if a "wake-up"
time computed earlier has arrived or not.

Converts upper case characters to lower

tolowerO convert.c case. Non-alphabetic characters are not
changed. This subroutine is from Bilofsky
[Ref. 18].

Converts an unsigned integer to the corre-

uithoh convert.c sponding hexadecimal ASCII string repre-
sentation. For example, 45 is converted to

versiono version.c Displays the current version number of the
control program on the terminal.

Checks the IOV bus. If the voltage has fallen
voltagesjloi 0 expmnnt.c too low, this function returns the valueTRUE; otherwise it returns the value

FALSE.
Checks for axiy indications of a launch.
These can come from the Vibration-activated

wejlaunchedO expmnt.c Launch Detector or from the Barometric
Pressure Switches.

98

APPENDIX F. SUBROUTINES, IN ALPHABETICAL ORDER WITHIN

EACH MODULE

Table 9. MS/DOS FILE INDEX: This table shows the names of the files in the
MS. DOS files. Subroutines are listed alphabetically by name within each
file group.

SOURCE SUBROUTINE PURPOSE
FILE

Loads the five parametric registers in the
bubble memory controller. Most of these
never change. Two, however, do change of-
ten. These two specify the page of bubble

bubble.x bpagesetO memory where transfers of data begin. Call
this function prior to any operation per-
forming input from or output to the bubble
memory to ensure the parameters are cor-
rectly specified.

Displays a menu of low-level bubble memory
bubblexc bubcmdmenuo controller commands. These are useful intesting the bubble memory for proper oper-

ation.

Initializes the bubble memory prior to its

bubble.c bubinitO being used. This initialization must always
be done after power is applied and before
input and output operations begin.

bubble.c bubioO Performs input from and output to the bub-
ble memory.
Provides a menu of functions permitting the
user to perform operations with the bubble
memory. These operations include:

1. applying and removing power,

bubble.c bubmenuo 2. initialization,

3. input,

4. output and

5. reading

the status of the bubble memory.
bubble.c bub offO Removes power from the bubble memory.

bubble.c bubon0 Applies power to the bubble memory.

99

Issues commands to the bubble memory
controller and analyzes the status codes
which result. In many cases, it will attempt
to issue a command repeatedly if there is

bubble.c issububcmdO some failure, doing this up to a specified
number of times. This routine is written in
C and is not fast enough to handle the read
and write commands. Use bubreadO and
bubivriteO for these.

Reads the status register of the bubblebubble.c rdstatregO mmr otolrmemory controller.

A buffer exists in the controller's memory to
hold a copy of data transferred to or from

bubble.c showvbubbuffO the bubble memory. This routine displays
the contents of that buffer either in ASCII
characters or hexadecimal.
A buffer exists in the controller's memory to
hold a copy of data transflerred to or from

bubble.c testpattern0 the bubble memory. This routine permits
the user to modify the contents of that
buffer.

Takes care of the actual transfer of data from
the bubble memory to the controller memory

bubr~s.s bubread0 during a read. This routine was written in
assembly language in order to achieve a data
transfer rate of 16 K bytes per second im-
posed by the bubble memory hardware.
Takes care of the actual transf'er of data to
the bubble memory from the controller
memory during a write. This routine was

bubns.s bubivriteO written in assembly language in order to
achieve a data transfer rate of 16 K bytes per
second imposed by the bubble memory
hardware.
Part of the sequence of steps necessary to
initialize the bubble memorv entails trans-
ferring the byte Oxff to the bubble memory

bubrw.s bubxfero 40 times. This routine does this. The rou-
tine is written in assembly language for
speed, but is called in the same manner as a
C routine.

clock.c clockcompareO Compares two clock times to see which one
is later than the other.

Dates and times in the real time clock are
stored in BCD format. This routine converts

clock.c clockintO them to integer format to make it convenient
to perform arithmetic with them. Thus, fu-
ture dates and times can be computed.

100

clock.¢ ciockreadO Reads the current date and time from thereal time clock.

Sets the current date and time in the real
clock.c clocksetO time clock according to values specified by

the user.

Adds two dates and times together to
produce a new date and time. In practice,

clock.c clocksumO one uses this to calculate a future date and
time from the current date and time and
some desired delay (e.g., 15 minutes).

clock.c dumpcock Display the date and time on the terminal.

Display the date and time on the terminal.

clock.c dumpjclockO This differs from dump clockO in that the
dates and times it uses are integers, not Bi-
narv Coded Decimal (BCD) numbers.

clock.c getjimeO Obtain a valid date and time from the user.

A menu routine allowing the user to set or
clock.c rtc 0 read the clock, and to test the time-out fea-

ture (see testtirneout() in this table).

clock.c showiaketire0 Displays the date and time when a time-outwill end.

Lets the user test the time-out feature. For
example. he can request a delay of 15 sec-

clock.c testtimeout0 onds. During this delay, the control pro-
gram will not respond to input. At the end
of this period, it will display the current date
and time.

In one mode of operation, this function
computes a "wake-up" time based on the

clock.c timeoutO current time and a specified delay. In an-
other mode. it checks to see if a "wake-up"
time computed earlier has arrived or not.

Converts an ASCII string representation of

convert.c atohO a hexadecimal byte into the corresponding
hexadecimal byte. For example, the string
"a" is converted to the byte value Oxa3.

Converts a four-byte ASCII string repres-
enting a two-byte hexadecimal word into the

convert.c atohexintO corresponding hexadecimal word. For ex-
ample, the string "a34b" is converted to the
word Oxa34b.

Converts a string representing a decimal in-
convert.c atoiO teger into the corresponding integer. This

subroutine is from Bilofsky [Ref. 181.

101

Converts a BCD byte to the corresponding
convert.c bcd-ascO character string representation. For exam-

ple, 0x17 is converted to "17".
convert.c bcd into Converts a one-byte BCD number to integer

format.
Converts a single character to its

convert.c ctohO hexadecimal ASCII string representation.
For example, Oxa3 is converted to "a3"'.
Converts an integer in the range 0 through

convert.c intbcdO 99 to BCD format.
Converts an integer to an ASCII string rep-

convert.c itoao resentation. This subroutine is from Bilofsky
[Ref. 181.

Converts upper case characters to lower

convert.c tolowerO case. Non-alphabetic characters are not
changed. This subroutine is from Bilofsky
[Ref. 181.
Converts an unsigned integer to the corre-

convert.€ uitohO sponding hexadecimal ASCII string repre-
sentation. For example, 45 is converted to
"2D"f

Provides a software-driven time delay in in-
crements of 10 ins. Written in assembly

delay.s Mlelayo language. but used like a C language routine.
Adapted from a program by Mr. David
Rigmaiden of the Naval Postgraduate
School.

expmnt.c adreadO Gets a character of data from the Analog-to-digital (A D) Converter.

Converts a character of raw data from the

expmnt.c adtointO Analog-to-digital (A D) Converter into an
integer format with the more meaningful
units of volts or degrees kelvin.
Permits the user to alter the contents of page

expmnt.c alter_pageO() 0 of the bubble memory. This is required in
initializing the experiment.
This routine is used in the abridged exper-
iment to prevent record mode from being re-

exprnt.c badjidea tojrecordO started after a power fault. Without this
safeguard, perfectly good data recorded dur-
ing launch might be erased.
Checks to see if the barometric switches have

expmnt.€ baro sm'itchO been activated yet. If so, launch must have
-tr toccurred and an appropriate log entry is

made.

102

Checks to see whether or not there is a ter-
expmnt.c checkprtO minal connected to the RS-232C serial inter-

face port.
Returns the value TRUE if the bubble

expmnt.c colder thanO memory's temperature is below the temper-ature given in the argument to the function,

FALSE otherwise.

Displays the contents of any page in the
expmnt.c display_data_page() bubble memory in a readable format. It will

not successfully display page 0. Use
displaypageO() for this purpose.

expmnt.c displaypageO() Displays the contents of page 0 in a readable
format.

expmnt.c do s~vepO Causes the sweep phase of the experiment tobe performed.

Causes the Vibro-acoustic Experiment to beexpnnt.c expinnt() performed.

Liktens for the Auxiliary Power Units
(APUs) to be activated. It also monitors the

expnt.c listenO Vibration-activated Launch Detector and
the Barometric Pressure Switches to see if a
launch has occurred without detection of the
activation of the APUs.

I ogevent() Makes entries into the event log stored in the
expmnt.c)bubble memory.

Displays a menu to provide for conveniently
changing the contents of bubble memory.This is essential for properly initiating thie
experiment.

Operates the heaters if the temperature of
expmnt.c monitor heaters() the bubble memory is too cold. If the tem--h s perature is too hot. it shuts the heaters off.

Otherwise it leaves the heaters alone.

Conducts routine monitoring of events upon
the completion of the Vibro-acoustic Exper-
iment. These functions continue until the

expmnt.€ postjaunchO Space Shuttle returns to earth, or until the
IOV bus no longer carries sufficient voltage
for safe operation of the bubble memories.
In the latter case, the experiment stops all
operations.

expmnt.c record() Performs the record phase of the abridged
experiment.

expmnt.c short experiment() Performs the abridged Vibro-acoustic Ex-
I periment.

103

Converts an event code into an intelligible
expmnt.c show eventO message which it then displays on the termi-

nal.
Removes power from any subsystems which

expmnt.c shut.downO presently have power. It makes a log entry
for each such case.
Removes power from any subsystems which

expmnt.c shut down no logO presently have power. It makes no log entry
of its actions.
Issues commands to the Solid State Data

expmnt.c ssdrmodeO Recorder (SSDR) to enter various modes of
operation.

expmnt.c ssdr statusO Obtains the status code from the Solid State
Data Recorder (SSDR).

Checks the 10V bus. If the voltage has fallen

expmnt.c voltages loi() too low, this function returns the value
-tcTRUE: otherwise it returns the value

FALSE.

Checks for any indications of a launch.
expmnitc ie launched() These can come from the Vibration-activated

-enLaunch Detector or from the Barometric
Pressure Switches.

The UNINWARE compiler provides the
standard C output routine printf() to provide
output to the standard output device. llow-
ever, this routine requires the user to provide
a routine fputc() to handle the output of a
single character to any arbitrary device. We

fputc.c fputc() only support output by fputcO to the
RS-232C terminal, so this routine is specific
to that device. The routine will not output
a character it' upon checking, it finds there
is no terminal attached to the serial interface
port. Thus, when the experiment is operat-
ing, calls to printfO are of no effect unless
there is a terminal connected.

initial.c inithardvare0) Initializes the six ports on NSC8IOA #1 and__ __ __ __ _ ____ ____ ___ ___ _ i2.

Processes the special characters CTRL S and
CTRL Y when read from the keyboard.
CTRL S is a toggle switch. The first time it

inout.c allow ctrl interrupts() is pressed, the display halts. The second time
it is pressed, the display resumes. Subse-
quently its function alternates between these
two. CTRL Y invokes the diagnostic sub-
system.

104

inout.c dumpo Produces a hexadecimal and ASCII dump

of any desired region of memory.

inout.c echo() Sends a single character to the terminal.
Inputs a string representation of a two-digit

inout.c gethex0 hexadecimal number from the terminal and
converts it to hexadecimal format. For ex-
ample, "3a" is converted to Ox3a.
Gets a four-digit hexadecimal number in

inout.c gethexinto string format from the terminal and converts
it to a hexadecimal word. For example,
"3ab2" is converted to Ox3ab2.

Inputs a string representation of a decimal
inout.c getintO integer from the terminal and converts it to

integer format. For example, "352"" is con-
verted to 352.

inout.c getpagenoo Asks the user for a page number in bubble
memory.
This program can see whether a character

inout.c look aheado has been input from the keyboard without
disturbing the input buffer.

inout.c portdump0 Outputs a string to the terminal. interface
port.

inout.c terminO Inputs a single character from the terminal.
Asks the user for a hexadecimal port address,

inout.c testinputO reads that port and displays the data read
from that port.
Asks the user for a hexadecimal port address

inout.c testoutputO and a hexadecimal byte to be sent to the
port. and sends it there.

First C language subroutine to get control
main.c maino after start-up. Decides whether to invoke

the menu-driven diagnostic routines or to
run The Vibro-acoustic Experiment.
Implements the C language standard library

mbrk.s mbrkO function mbrkO. This function was provided
with the Uniware C Compiler.

Asks the user for an address in memorv and
the number of bytes he wants to see dis-

main.c memorydump() played. It then provides a hexadecimal and
ASCII display of the contents of the selected
area of memory on the terminal.
Displays the first in a hierarchy of menus

main.c menuo permitting the user to test subsystems of the
Vibro-acoustic Experiment individually.

105

This routine permits the user to perform in-

main.c testioO put from and output to any port in the sys-
tem. By -port" we mean here an address in
the input and output space.
Inputs a character from a port. Written in

newio.s inputo assembly language, but used like a C lan-
guage routine.
Outputs a byte to a port. Written in assem-

newio.s outputo bly language, but used like a C languageroutine.
powerxc power status0 Inputs the one-byte status code from the

power relay subsystem.
power. power write0 Sends a one-byte command code to the

-e power relay subsystem.

A menu program which let's the user read
poiwer.c pwrcnt0 the status code from the power relay subsys-

tem or send commands to it.

version.c iersion0 Displays the current version number of thecontrol program on the terminal.

106

APPENDIX G. CONTROL PROGRAM DOCUMENTATION

We presented a general description of the software as a whole in Chapter

IV. DESIGN OF THE CONTROL SOFTWARE on page 43. This included a mod-
erately detailed description of the flowcharts which describe the system, beginning with

Flowchart 0 in Figure 20 on page 48. This appendix contains more detailed de-
scriptions of the operation of each subroutine in the control program. A basic know-

ledge of the C programming language is assumed.
We have grouped the functions into two broad categories:

I. major subroutines, and

2. support subroutines.

The descriptions in this appendix are best understood by referring to the source code in
APPENDIX H. CONTROL PROGRAM SOURCE CODE on page 150.

In Section A. Major Subroutines and Functions on page 108 we present the major

subroutines and functions of the control program in an order based roughly on their

position in the hierarchy of function calls. This section therefore follows the overall
structure of the control program.

Referring again to Flowchart 0 in Figure 20 on page 48, we see that the control

program contains two major parts:

1. One performs the Vibro-acoustic Experiment.

2. The other operates a menu-driven system to permit testing of the system on the
ground.

Once we have discussed the major subroutines, there will remain numerous lesser

subroutines which we describe in Section B. Supporting Subroutines and Functions on
page 121. We provide two tables to make it easier quickly to ascertain the purpose of
subroutines and their locations in several different source files. Table 8 on page 91 lists

all subroutines by name, and shows in which MS, DOS source files subroutines are lo-
cated. Table 9 on page 99 lists the contents of each MS,,DOS source file in alphabetic

order by name.

In general, the program attempts to display many diagnostic messages on the ter-

minal using the printfO function. This function was supplied with the C compiler, but
it in turn calls a function called fputcO not supplied with the compiler. The purpose of

107

the subroutine fputcO is to accept a character from the printfO function and to send it

to the terminal for display. We created this subroutine, and its description is contained

in Section B. Supporting Subroutines and Functions on page 121. This function al-

ways checks to see whether there is a terminal attached or not. If not, it makes no at-

tempt to display any messages on the terminal. Henceforth, whenever we say that

something will appear on the terminal, it will be understood that this will only occur if

the terminal is attached.

A. MAJOR SUBROUTINES AND FUNCTIONS

1. main()

This is the beginning point for any C language program. It is called by the

start-up code, which is written in Z-80 assembly language. The main() program first

initializes pointers to the buffers which will hold data from the bubble memory. There

are two formats for such data. One is used in page zero of the memory, which is used

to record the current status of the experiment. The other format is used in all other

pages of the bubble memory to record all actions and measurements taken during the

experiment. The buffers are treated both as arrays and as structures. When they are

treated as arrays, it is easy to transfer the data to or from the bubble memory. When

they are treated as structures, it is easy to extract individual fields of data. By forcing

the pointers pagezero and logpage to point to the arrays page0_buffer and log-buffer

respectively, we can access the data subsequently by using either the pointer to the

structure or the name of the array as appropriate.
The mainO program then calls inithardsware() to initialize the two NSC8IOA

A.M-I 0 Timer chips on the controller board. Next it checks to see if there is a ter-

minal attached by calling checkprtO. The absence of a terminal implies that the appa-

ratus is now installed in the Space Shuttle and the controller should therefore perform

the experiment. Therefore, if there is no terminal attached, maino will call expmnto,

which performs the Vibro-acoustic Experiment.

If there is indeed a terminal attached, mainO calls shutjdown no..ogO, whose

function is to remove power from all subsystems without logging that action in the

bubble memory. The reason for remce% ing power is to ensure that all the subsystems are

in a known state at the outset. The reason for not wishing to log this action is that the

log entries should only be made during the course of the experiment. Since the con-

troller is about to enter the menu subsystem, it is not going to perform the experiment

and so no log entry is appropriate.

108

Next main() calls menuo, from which all other testable sections of the control
program can be selected. The option EXPERIMENTOK permits the menu diagnostic
subsystem to invoke the program expnint0 later, if the user wishes to do so. This would

permit him to perform the experiment on the ground and so test its operation.
2. void inithardivare(void)

This subroutine initializes the two NSC810A RAM-I/O-Timer chips on the
controller board. The uses of the pins of port A in each chip are given in Table 4 on
page 17 and Table 5 on page 17; those of Port B are given in Table 2 on page 15 and

Table 3 on page 16; and those of port C are given in Table 6 on page 18 and Table 7

on page 19.
MDRI is the Mode Definition Register of the NSCS10A -i1. Writing a OxOO to

it puts port A, into basic I 0 mode, which is the simplest method of 1 0 supported by

this chip.22

DDRAI is the Data Direction Register of port A, of the NSCSlOA -l. Writing
Oxff to it causes each of its bits to be configured for output,

DDRBI is the Data Direction Register of port B, of the NSCSIOA =1. Writing
Oxif to it causes each of its bits to be configured for output.

DDRCI is the Data Direction Register of port C, of the NSCSIOA 91. Writing
0x30 to it causes bits 0 through 3 and bits 6 and 7 to be configured for input. Bits - and
5 are configured for output, although bit 5 is not used in the Vibro-acoustic Experiment.

Note: this is only a 6 bit port; bits 6 and 7 do not exist.

TMO is the register for setting the mode of Timer 0 in NSCSIOA #1. Writing
OxOO to it will stop the timer, an action which must be performed before changing its

mode. Writing 0x25 will cause the timer to produce a square wave without
"prescaling" and with "single precision". When prescaling is not used. every pair of in-

put clock cycles is used to advance the timer's counter by one. When single precision
is selected, only the low byte of the timer will ever be read.

TOLBI and TOHBI are the registers for the low byte and high byte respectively
of the modulus for Timer 0 in NSC810 #1. This number serves to initiate the timer

counter. During subsequent operation, the counter is decremented once every clock
period. Each time the counter reaches 0, the timer output switches to the opposite state

and the timer is reloaded. We write 0x07 to the low byte and OxOO to the high byte, so

the modulus is 7. This means that after every seven cycles, the clock is reloaded. The

22 With basic 1, 0, there is no handshaking (see Glossary) with support hardware.

109

reloading consumes a further cycle, and it takes two complete reloads to go through one
cycle of the output. The period thus is 2 x (7 + 1) = 16 clock periods. The NSCSOO is
driven by a 4.9152 - 2 - 2.4576 MHz clock. So 16 clock periods take 6.51 As, for a

clock frequency of -1 153.6 kHz. This signal is used as a baud-rate generatorcloc freuenc of6.51 #

on the controller board; it is fed to an Intersil 6402 UART which further divides the
frequency by 16, yielding a 9600 baud transmission rate at which to drive the RS-232C
interface.

START01 is the start port of Timer 0 in NSC8I0 #1. Writing anything to this
port causes the newly programmed timer to start operating.

MDR2 is the Mode Definition Register of the NSC810A 02. Writing a 0x00 to
it puts port A2 into basic IO mode. This is the simplest method of I 0 supported by

this chip.23

DDPA2 is the Data Direction Register of port A2 of the NSCS1OA =2. Writing
OxOO to it causes each of its bits to be configured for input.

DDRB2 is the Data Direction Register of port B2 of the NSC810A ;i2. Writing
0x00 to it causes each of its bits to be configured for input.

DDRC2 is the Data Direction Register of port C2 of the NSC81OA ;2. Writing
0x31 to it causes bits 1 through 3 to be configured for input. Bits 0. 4 and 5 are con-
figured for output. Bits 1 and 2 are not in use. Note: this is only a 6 bit port; bits 6
and 7 do not exist.

TM02 is the register for setting the mode of Timer 0 in NSCSIOA =2. Before
you can change the mode, you must first stop the timer. Writing 0x00 to it does this.
Writing 0x25 will cause the timer to produce a square wave without "prescaling" and
with "single precision". When prescaling is not used, every pair of input clock cycles is
used to advance the timer's counter by one. When single precision is selected, only the

low byte of the timer will ever be read.

TOLB2 and TOHB2 are the registers for the low byte and high byte respectively
of the modulus of Timer 0 in NSC810 #2. This number serves to initiate the timer

counter. Once every clock period, the counter is decremented. Each time the counter
reaches 0, the timer output switches to the opposite state and the timer is reloaded.
We write 0x01 to the low byte and OxOO to the high byte, so the modulus is 1. This

means that after 1 cycle, the clock is reloaded. Now the reloading consumes a further
cycle, and it takes two complete reloads to go through one cycle of the output. The

23 With basic IO, there is no handshaking (see Glossary) with support hardware.

110

period thus is 2 x (1 + 1) = 4 clock periods. The NSC800 is driven by a

4.9152 + 2 = 2.4576 MHz clock. So 4 clock periods take 1.628 As, for a clock frequency

of 1.628 As = 614.4 kHz. This frequency is used as a clock for the National Semicon-
ductor ADC0816 Analog-to-digital (A, D) Converter.

When driven by a clock of frequency 640 kHz, the A'Ds normally can complete

the conversion of an analog signal to a digital value in around 100 As. The frequency

we are using here, 614.4 kHz, is close to this, so we should get comparable performance.

[Ref. 19: pp. 8-71 to 8-81]

START02 is the start port for Timer 0 in NSCSI0 #2. Writing anything to this

port causes the newly programmed timer to start operating.

Finally. we clear bits 4 and 5 of port C2 by writing 0x03 to the port C2

"bit clear" register. BCLRC2. T-he purpose of this is to ensure that power to the bubble

memory remains off, and to ensure that the bubble memory's reset line is held low.

Strictly speaking, this should not be necessary, since the registers of the NSC8I0 are in-

itialized to be zeros. However, we take nothing for granted. and this precaution helps

preclude the loss of the bubble memory's contents that might result from an improper

application of power.

3. char checkprt(void)

This function inspects the TERYION bit (bit 3) of Port C in NSCSIO i2. This

bit is a ' if there is an RS-232C terminal connected to the controller. It is a 1 otherwise.

The function returns a TRUE in the first case; a FALSE in the second.

4. void shut-downnolog(void)
This subroutine removes power from any subsystems which are currently on.

It does not record the fact in the bubble memory log, which is the only respect in which

it differs from the subroutine shut-doisn0. It obtains a character describing the position

of each of the relays in the power subsystem by calling the function poierstatusO. The

series of if statements which then follows causes successive bits of that character to be

tested. Every time one of these bits indicates that a relay is in the 'on' position, that

relay is turned off with a call to po-Aer..AriteO.
5. char menu(char experiment-flag)

This function is at the top of a hierarchy of diagnostic subroutines. The func-

tion calls the sub-function versiono whose only purpose is to display the number and

date of the current version of the control program. It next presents a menu from which

the uscr can select any of a number of categories of diagnostic tests. The function

terminO is used to obtain a single character from the keyboard, that character is con-

Il1

verted to lower case by toloiter0 (if it was not already in lower case), and the character
is displayed on the terminal. That character is used by the switch to select a case state-

ment appropriate to the user's choice. The entire process will be executed repetitively.
The only way to leave it is by choosing to run the experiment. If this is done, the

function expmnto gets control.

To cause a software reset, the program executes an assembler instruction jp 0.
This function has the effect of restarting the controller at address 0 of memory. This is
the same address at which execution begins when power is first applied. All variables

are set to their initial values, other start-up functions are performed as usual, and the

program maino begins to execute anew.

The function rtc0 accesses the real-time clock diagnostic subroutines.

The function porcntO access the power subsystem diagnostic subroutines.

The function bubmenu0 accesses the diagnostic subroutines which can be used
to test the bubble memory module. The tests available through this selection all are very

low-level tests.

When choice E is made, the controller enters a for loop and successively reads
each of the analog-to-digital (A D) converter channels by calling the sub-function

adreadO. This function returns an eight-bit number addata which is proportional to the
value read by the A D converter. A call to printfO displays this number along with a

descriptive adcaption (defined in the file global.c). The first three readings are known to

be voltages. The remaining values are temperatures, so they are displayed in a slightly
different format. Furthermore, depending on which channel the A D converter read. the

number read may represent different magnitudes in the measured units. For example,

the number 102 may represent 4V or 2700 K, depending on which channel was read.
Voltages, fall either into the range [0, 10IV or the range [0, 201V. Temperatures

fall into the range [0, 500*K. The function adtointO converts the value read by the A D
converter into its value in degrees Kelvin or in hundredths of volts, whichever is appli-

cable. The converted value is then displayed using the printfO function. To get two
converted readings per line, carriage returns are placed at the end of every other dis-

played value, only.

There are two possibilities if choice F is made. One is that experiment-flag is

TRUE; the other is that it is FALSE. The former case always occurs when menu() is

called the first time, from maino. However, it is possible to interrupt the execution of

the experiment and to enter the menu subsystem recursively. It is not possible to make

112

menu choice F under these circumstances. To restart the experiment would require first

making choice A to reset the system.

The function testioO is called when choice G is made. Its purpose is to allow

low-level testing of the peripheral devices.

The function memory dumpO is called when choice H is made. Its purpose is

to display the contents of the controller's memory. This is useful only in debugging the

software.

The function log menuO is called when choice I is made. Its purpose is to allow

the contents of the bubble memory to be displayed. It differs from the functions called

when choice D is made in that the contents of the bubble memory are regarded by

log menuO as formatted data areas, not just as collections of characters. This means

that the data stored in the bubble memory during execution of the experiment can be

displayed in an intelligible format, and the experiment's status, stored in page 0. also can

be displayed in a readable format. The function log_menu0 also allows the status to be

modified in order to affect the manner in which the controller performs the experiment.

The details of how to do this are contained in Chapter V. 1HOW TO GET TIE EX-

PERIMENT READY FOR A LAUNCH on page 63.

6. void version(void)

This function displays the number and date of the current version of the control

program on the terminal.

7. void rtc(void)

This function displays a menu of functions related to the operation of the real-

time clock. The clock can be read, set or tested from here. The method of displaying

the menu, reading the choice, and taking the appropriate action is identical to that used

in the function menuo described earlier. The function rtc() differs only in the choices

and actions possible.

Choice A causes the function clockreadO to be called. It stores the current date

and time in a structure whose pointer is clock. The function dumpclockO is called next;

it displays the date and time on the terminal. This choice is provided to verify that the

real time clock is working correctly.

Choice B causes the function clocksetO to be called. It permits the user to set

the current date and time. The real time clock is powered by its own battery, so this

option should seldom be required.

113

Choice C causes the function testtimeoutO to be called. Its purpose is to permit

the operation of the timeout feature to be tested. It is useful only in debugging the

software.

8. void clockread(struct datetime *your-clock)

This function inputs the binary-coded-decimal (BCD) time from the real-time

clock and places the results in a structure pointed to by your-clock. If the current

number of seconds changes between the start and end of reading, it means that the clock

has advanced to a subsequent time. To preclude the reading of an incorrect time, the

input sequence is repeated in the hope that an advance will not occur again. This can

happen up to 10 x TRIES times.

For example, suppose the time were 9:59:59 when the seconds and minutes were

read. The clock might advance to 10:00:00 before the hours were read. Then the time

read would appear to be 10:59:59. which is wrong by one hour. By reading it again, we

may avoid this error, but there is no obvious way to guarantee it without stopping the

clock. Doing so would be disadvantageous, since it would affect timing relationships in

an unpredictable manner, so we chose not to stop the clock but to take our chances and

try reading it again.

9. void dumpclock(struct datetiine *clock)

This function displays on the terminal the time stored in a structure pointed to

by clock. To do this it calls the function bcdintO, which converts the BCD values in the

date and time provided by the real time clock into decimal equivalents. These converted

values are then displayed by the function printfo.

10. void clockset(struct datetime *clock)

This function first calls the function get_timeO to ask the user for the current

date and time. The time specified is left in the structure pointed to by clock. The func-

tion clocksetO then stores the date and time in the real-time clock by repeated calls to

outputo.

11. void testtimeout(void)

This allows the user to test that the time-out function is working. The time-out

function enables the control program to continue normal processing while waiting for

some amount of time to elapse.

For example, after launch the controller will monitor the Solid State Date Re-

corder (SSDR) for completion of recording. However, it will also initialize a time-out

of three minutes, and will stop waiting for the SSDR if this time should elapse before the

SSDR signals completion. The testtiineoutO function allows the user to test the time-out

114

feature for any number of seconds, minutes or hours. A menu is presented to the user

using the same method already outlined in the description of the function menuo. The

units of the specified delay depends on the menu choice made. The function getintO is

called to obtain the number of units of delay that the user wants. The current time then

is obtained with a call to clockreado, and it is displayed on the terminal with a call to

dumpclock(). The timeoutO function then is called to initialize the delay according to

the number of delay units specified by the user. A while loop calls timeoutO repeatedly

with the NULL parameter. This parameter causes the timeout0 function to check to see

if the desired wake-up time has arrived or not. As long as it has not yet arrived, that

function returns FALSE and the program continues to loop. If other statements were

provided before the end of the loop, then they would be performed repeatedly until the

function timeout0 finally returned TRUE, signifying that the desired amount of time had

elapsed. The function testtimeoutO has no such instructions, but when tL delay period

is over, it rings the bell and once again reads and displays the current time.

12. void p'ircnt(void)

This function displays a menu to allow the user to test the operation of the

power board relays. Any of the attached units, such as the SSDR. can be switched on

or off from this menu. The method of displaying the menu is the same as that already

given in the description of the function menu). Any menu choice from A through J is

converted to a number in the range [0.9] by subtracting the character 'a from it. This

number is then used as an index into array relay to select the command to be issued to

the power control subsystem through a call to the function powerw riteo. Choice K

causes the power subsystem's status to be read with a call to poer statusO and then

displayed on the terminal. The meaning of this byte is shown in Table 2 on page 15.

13. void bubmenu(void)

This function displays a menu which lets the user test the bubble memory on the

controller circuit board. The method of displaying the menu is the same as that already

given in the description of the function menuo.

Choice A causes a call to hub ono.

Choice B causes a call to bub.offo.

Choice C attemps to initialize the bubble memory with a call to bubinito. The

results of this attempt are then explained with a call to printfo.

Choice D causes a call to bubcmdmenu0.

115

Choice E causes a call to testpatterno. The character string tempbuffer is pro-

vided to this function for storage of a string of characters entered by the user from the

keyboard.

Choice F causes the contents of tempbuffer to be displayed in ASCII format.

Choice G causes the contents of tempbuffer to be displayed in hexadecimal for-

mat. This would be useful if the buffer had been loaded from the bubble memory and

if it contained unprintable characters. Such would be the case if the contents of the

bubble memory had been generated by performing the experiment, since the experiment

formats the data in characters which may not all be capable of being displayed.

Choice H calls getpagenoo to ask the user which page of the bubble memo'-

he wishes to access. It then calls bubioO to transfer the contents of the buffer into that

page of the bubble memory.

Choice I calls getpageno0 to ask the user which page of the bubble memory he

wishes to access. It then calls bubioo to transfer the contents of that page of the bubble

memory into the buffer.

Choice J causes a call to rdstatreg0, which reads and displays the contents of

the bubble memory controller's status register. The format of this register is discussed

in detail in [Ref. 1].

14. char bub on(void)

This function applies power to the bubble memory on the controller circuit

board.

15. void buboff(void)

This function removes power from the bubble memory on the controller circuit

board.

16. char bubinit(voild)

This subroutine initiates the bubble memory on the controller circuit board.

Power must have been applied first. The sequence of commands is described in

[Ref. 1: pp. 38-39b]. It is as follows:

1. Issue the BABORT (abort) command to the bubble memory.

2. Set up the parametric registers, pointing to page 0 of the bubble memory.

3. Issue the BINIT (bubble initialize) command.

4. Issue the BFIFORESET (bubble FIFO reset) command to reset the first-in, first-
out (FIFO) buffer in the controller's bubble memory.

5. Transfer 40 Oxff characters to the FIFO buffer in the bubble memory.

116

6. Issue the BWRBLREG (bubble write boot loop register) command. At this point,
the bubble memory is ready for reading and writing.

17. void bubcmdmenu(void)

This subroutine allows the user to issue any of the following commands to the

bubble memory, one at a time:

1. Abort

2. Load parametric registers

3. Initialize

4. Reset the FIFO buffer

5. Perform the transfer of 40 Oxff characters to the FIFO

6. Write the boot loop register

These commands are issued by bubinitO, but are provided separately here to permit de-

tailed testing of the initialization process.

18. void testpattern(char buffer[1)

This subroutine permits the user to fill a buffer in RAM with characters to be

written to the bubble memory. Up to PAGELENGTH characters can be written at a

time. Its purpose is to enable the user to verify that data can be written to the bubble

memory and read back successfully later.

This subroutine begins by placing a 0 in the variable c. It asks the user to enter

a string of characters from the keyboard, and then enters a loop. It will continue reading

up to PAGELENGTH characters. If it encounters a carriage return, it will place blanks

in the remainder of the buffer.

19. void shossbubbuff(char buffer[J, char mode)

This subroutine will display the contents of buffer either in ASCII format or in

hexadecimal representation, according to the value of mode. This parameter can be ei-

ther ASCII or HEX. The ASCII format would be suitable if it were known that the

bubble memory page buffer contained only printable characters, as it would if it had

been filled by testpatterno. The hexadecimal format would be suitable if it were known

that the bubble memory page previously read contained unprintable characters, or if the

contents were unknown.24

24 It may be unwise to risk sending potentially unprintable characters to the terminal, since
some of them have surprising results, such as clearing the screen.

117

20. char bubio(char command, int page, char *buffer)

This subroutine permits reading from or writing to any page of the bubble
memory. Pages can fall in the range 0 through 8191. Commands can be either one of
BREAD or BWRITE. The data is placed into or read from the buffer pointed to by

buffer.

To operate the bubble memory when the temperature falls below 10*C may
cause its contents to be destroyed. A call to the function colder than0 precludes this

from happening. If that function returns TRUE, then it must be too cold. The function

bubio returns a FALSE to indicate that it was unsuccessful in accessing the bubble

memory.

To minimize power consumption, the subroutine applies power to the bubble

memory before the operation begins and removes it again at the end of the transfer. It

calls bpagesetO to set the parametric registers so as to allow the correct page of bubble

memory to be transferred. It then calls bubreadO or bubiirite0 as appropriate. After the

transfer is completed, the subroutine reads the bubble status register to see if the oper-

ation was successful or not. The bubioO subroutine returns a TRUE if the transfer

worked; FALSE otherwise.

21. void rdstatreg(void)

This subroutine lets the user check the contents of the bubble memory status

register. The meaning of its contents is shown in Table 10 on page 119. To obtain the

status code, this subroutine calls the function inputo, which reads the contents of the

port BUBCTRL (port 0x41). This port yields the status code, which is then converted

to hexadecimal format using the function ctohO and is displayed.

22. void expmnt(void)

This function performs the experiment. Its first task is to call initializeO. This

subroutine retrieves the current mission status from page 0 of the bubble memory. If
there is no more room in the bubble memory, a value of FALSE will be returned. Al-

though the experiment will be performed, no entries can be made in the log. The Solid
State Data Recorder (SSDR) may therefore still be able to record acoustic data suc-

cessfully. There will be no log of the events as they occur, however.

The function expmnto next checks to see whether the flag fullexperiment in

page 0 is TRUE or FALSE. If not, the function shortexperimentO is called to perform

the abridged experiment. Otherwise, the unabridged experiment is to be performed by

expmntO.

118

Table 10. BIT ASSIGNMENTS FOR THE BUBBLE MEMORY CONTROLLER
(BMC) STATUS BYTE: From (Ref. 1 : Chapter 3, p. 121.

Bit Value leaning

1 FIFO Ready. The FIFO buffer is ready
0 to transfer data.

0 The FIFO buffer is not ready.

1 Parity error.1
o No parity error.

2 1 Uncorrectable error.

0 No uncorrectable error.

1 Timing error.

0 No timing crror.
4 1 OP FAIL. The current operation failed.

0 No OP FAIL.

OP COMPLETE. The current operation
5 is complete.

_ No OP COMPLETE.
Busy. This means that a connand has
been accepted but is not yet complete.

6 The BMC stays busy throughout a data
transfer.

0 Not busy.

The next step is to initiate the sweep phase, if this has not already been done.

Recall that this might have occurred if power had been removed from the controller at

an earlier time, whether by human intervention or through a fault. If the sweep phase

is required, the function do.sweepO is called to do it.

Next the controller must decide whether or not a launch has already occurred.

It consults the launchdone flag in page 0 of the bubble memory. If this flag is TRUE,

the Space Shuttle launched earlier. Otherwise, we must listen for the activation of the

Auxiliary Power Units (APUs) by calling the function listeno. When this function

completes its job, it will return a mission status. This can take on any one of the fol-

lowing values:

DAPUON The activation of the APUs has been detected.

119

DLAUNCH The activation of the APUs was never detected, but launch was
detected. This may be the case if the Vibration-activated
Launch Detector detects the vibration associated with the ig-
nition of the solid rocket motors or if the Barometric Pressure
Switches detect an ascent.

DUSERNOAPU The system is being tested on the ground and the user depressed
a key while the system was listening for the APUs. This pro-
vides a means of terminating the period of waiting for a signal.

If listen() detects anything, then the function expmntO will turn on the Analog-

to-Digital (A/D) Converter by sending the code ADON to the function poner.Writeo.

It then will turn on the Solid State Data Recorder (SSDR) by sending the code
SSDRON to the same function. Both these actions will be logged in the bubble memory

by the function logevento. If listenO had returned the mission status code DAPUON,
then expmnt() commands the SSDR to enter scroll mode. which means that it will start

recording ambient noise. Since the APUs are now on, we know that a launch must oc-

cur within seven minutes, or the mission will be scrubbed by NASA. We want to wait
at least this long. To be on the conservative side, we begin a ten ninute time-out period,

during which we wait for some indication of a launch. The function ieJaunched0 will
return the mission status code DLALNCH if it detects such an indication. 'I he function

look ahead discard0 checks to see whether, during ground testing. the user has depressed

a key during this time-out period. If so. we regard the time-out as having been com-
pleted. This permits accelerated testing of the system without always waiting for the end

of the full time-out period. Eventually one of the two conditions will have occurred and

the waiting period will end.

If the launch had occurred at some earlier time, we would end up in the next
section of the code in expmnto. The fact that a launch had occurred previously would

be logged by calling logevent() with the argument PRIORLAUNCH, and the mission

status would be set to this same value.

The next section of code is executed only if a launch is in progress. The SSDR
is commanded to leave scroll mode and enter launch mode. The SSDR has only enough

memory to record two minutes of noise after a launch. We initiate a three-minute
time-out period so that if the SSDR fails to report completion, we will still be able to

go on to other tasks. During the period of this time-out, we want to ensure that a

launch is recorded in page 0 of the bubble memory, if in fact a launch has occurred. If
the launchdone flag in page 0 has not been made TRUE yet. expmtn() calls

baro-sisitchO. This funcion will check the condition of the barometric switches. If either

120

one has fired, it will make the launchdone flag TRUE. The barometric switches are re-
garded as the only thoroughly reliable indication of a launch.

We will terminate the launch phase either because the SSDR reports completion
or because the time-out has occurred. We record whichever of these is the case by call-

ing logeventO with either the argument DOPCOMP or DNOOPCOMP, respectively.

Unless expmnto detected that the launch had been aborted, the experiment will
next invoke the function postjlauncho. This function will keep control until power is

removed from the experimental apparatus.

B. SUPPORTING SUBROUTINES AND FUNCTIONS
The major modules of the control program were described in Section A. Major

Subroutines and Functions on page 108. Subroutines not described there are described

here. They are listed alphabetically by the name of the source file in which they are de-

fined, and alphabetically by function name within file name.

1. File bubble.c
a. void bpageset(int page)

This subroutine initializes the parametric registers in the bubble memory.

There are five of these, and they contain information about the bubble memorv's status
and about upcoming data transfers. The meaning of the fields within these registers is

given in Table 11 on page 122. A complete description of their use is given in [Ref. 1:

pp. 7-121. from which the information in Table 11 on page 122 is taken.

121

Table 11. CONTENTS OF THE PARAMETRIC REGISTERS IN THE BUBBLE
MEMORY CONTROLLER: Extracted from [Ref. 1 : Chapter 3, pp.
7-121.

REGIS- REGISTER BITTER AD- NAME FIELD CONTENTSDRESS

Least significant eight bits of the
Least Significant block length. The block length

OxOb Byte of the Block 0-7 is the number of pages trans-
Length Register ferred to or from the bubble

memory at one time.
Most significant three bits of the
block length. Thus there are !1

0-2 bits in the block length. permit-
ting up to 2' = 204S pages to be
transfierred at once.

3 Unused
The number of Formatter SenseMost Sigznificant Amplifier channels available.

Ox0c Byte of the Block The binary value 0001 is appro-
Length Register priate here because we have only

one bubble nemory" attached.
4-7 Two channels are used to com-

municate with the bubble meni-
orv. With a single bubble
memory availabe. the page size
is defined to be 64 bytes in
length.

122

Interrupt enable (normal). We
set this to 0 because we are not

0 using interrupts to communicate
with the bubble memory control-
ler.

Interrupt enable (error). We set
I this to 0 because we are not using

interrupts to communicate with
the bubble memory controller.

Direct Memory Access (DMA)
2 Enable. We set this to 0 because

we are not using DMA with the
bubble memory.

3 Reserved by Intel.
Write Bootlooop Enable. The
bootloop is used internally to the
bubble memory. It need never

4 be rewritten except as part of a
diagnostic test. We let this be 0

OxOd Enable Register since we don't want to modify the
bootloop.
Enable Read Corrected Data
(RCD). We set this to 1 to per-
mit the format sense amplifier to
apply error correction to errone-
ous data. If the error is uncor-
rectable. then the erroneous data
will be transferred to the host
processor.
Enable Internally Corrected Data
(ICD). Setting this causes the
bubble memory to notify the host
processor of its inability to cor-
rect erroneous data. In this case,
it does not transfer that data.
We set this to 0 and don't use the
feature.

Enable Parity Interrupt. We set
7 this bit to 0 because we are not

using interrupts.

The least significant byte of the
address. The address refers to the

The Least Signif- particular page within the bubble
exOe icant Byte of the 0-7 memory where data transfers are

Address Register to begin. Since we are using a
block length of one page. this
actually addresses the single page
we are transferring.

123

Most significant five bits of the
0-4 address. Thus there are

2'1 = 8192 pages in the bubble

Most Significant memor.

OxOf Byte of the Ad- Magnetic Bubble Memory
dress Register (MBM) Select. This field con-

5-7 trols which bubble memory is
addressed. Since we only are us-
ing one bubble memory, we set
this to all zeroes.

b. char issububcmd(char command)

This subroutine is used to issue a command to the bubble memory con-

troller on the main controller circuit board. The sequence it follows is given in detail in

[Ref. I: pp.40-451. For our purposes, the sequence is as follows:

1. Make sure the BUSY bit is 0 before sending any cormmand (except ABORT). To
do this, we read the status code in the BUBCTRL port and check the BBUSY bit.
When this is a 0, we can proceed. More than one attempt will be made to succeed
in this. If the check fails repeatedly, the subroutine displays the status code and
returns a value of FALSE.

2. Issue the conmand to the bubble memory controller by calling the function
outputo.

3. Check to see that the command was accepted. This is signalled by the bubble me-
morx controller's setting the BUSY bit once again. If the BUSY bit is not set
within a reasonable amount of time, the command was not accepted. In the case
of the commands FIFO RESET and WRITE BOOTLOOP REGISTER. we can
ignore the fact that the BUSY bit never was set if we get an OPERATION COM-
PLETE anyway.

4. Wait for the OPERATION COMPLETE code from the bubble memory controller.
If this does not occur within a reasonable time, the command did not succeed.

The phrase "a reasonable time" in this subroutine means that the bubble memory

controller's status was inspected BTRIES times without success. We have written the

subroutines such that they will regard the command as having been successful if the

bubble memory controller returns an OPERATION COMPLETE code even if the

BUSY bit remains 0. ([Ref. 1] does not suggest that this latter indication can occur.

However, if the command is accepted and completed very quickly, the control program

might never observe the BBUSY bit, so it seems to be a good idea to permit it.)

It was our intention that this subroutine be used to issue all commands to

the bubble memory. However, it executed too slowly to permit its use with data trans-

fers. The subroutines bubreadO and bubiriteo, written in assembly language, were

124

written for this purpose. In the case of other commands, TRUE is only returned if the

bubble memory returns OPERATION COMPLETE in the status byte. FALSE is re-

turned otherwise.

2. File bubrw.s

a. char bubxfer(void)

This subroutine is required during initialization of the bubble memory. It

writes 40 Oxff characters to the bubble memory. It returns TRUE if the transfer worked;

FALSE otherwise. The subroutine is written in assembly language for speed, but is

called in the same manner as a C subroutine.

b. char bubread(char *buffer)

This subroutine reads data from the bubble memory and places it in a buffer

whose address is passed as a parameter. It is written in assembly language in order to

execute sufficiently rapidly to preclude overflowing the buffer in the Bubble Memory

Controller (BMC). The listing of this subroutine includes many comments which explain

the purpose of each step. The following is a list of the actions which must be accom-

plished by this subroutine.

I. Save the contents of all registers.

2. Issue the FIFO reset command to the BIC.

3. Issue the READ command to the BMC.

4. Wait for the BUSY bit to become a one. If this never happens, the command has
failed.

5. Input 64 characters from the bubble memory. The FIFO bit must be set to I be-
fore each character is read. If this bit never becomes a 1, the command has failed.

6. Restore the contents of all registers to what they were before the subroutine began
to execute.

c. char bubwrite(char *buffer)

This subroutine writes data to the bubble memory from a buffer whose ad-

dress is passed as a parameter. It is written in assembly language in order to execute

sufficiently rapidly to preclude having the Bubble Memory Controller (BMC) empty its

internal buffer before all the data has been sent to it by the experiment controller. The

listing of this subroutine includes many comments which explain the purpose of each

step. The following is a list of the actions which must be accomplished by this subrou-

tine.

1. Save the contents of all registers.

2. Issue the FIFO reset command to the BMC.

125

3. Issue the WRITE command to the BMC.

4. Wait for the BUSY bit to become a one. If this never happens, the command has
failed.

5. Output 64 characters to the bubble memory. The FIFO bit must be set to I before
each character is written. If this bit never becomes a 1, the command has failed.

6. Restore the contents of all registers to what they were before the subroutine began
to execute.

3. File clock.c
a. void clockint(struct datetime *clock, struct idatetime *iclock)

This subroutine takes a datetime structure pointed to by clock and converts
it to an idatetime structure pointed to by iclock. The function bcd into is used to convert
the binary coded decimal (BCD) format used in the datetime structure into the integer
format used in the idatetime structure.

b. char clockconpare(struct idatetime *clockl, struct idatetime *clock2)

This subroutine compares the two times pointed to by clock1 and clock2.
It will return TRUE if the first time is equal to or later than the second; FALSE other-
wise. To do the comparison, each element of the time is compared. from month down
to second, in that order. The principle difficulty is in comparing dates that span New
Year's Day. We want January 1 to be regarded as coming after December 31. not be-

fore.

To do this we first subtract the second month from the first. The difference
is taken modulo 12. The modulo operation would not change any difference from 0
through 11; a difference of-Il through -I would be changed to 1 through II respec-
tively. Results in the range I through 5 indicate that the first date is later than the sec-

ond.

For example, if the first date is January (month 1) and the second date is
December (month 12), the difference is 1 - 12 = -11. When this is taken modulo 12,
we get 1. Thus January is I month after December.

If the first date is June (month 6) and the second date is December (month
12), the difference is 6 - 12 - -6. Taken modulo 12, this is 6. Since this is greater than
5, we regard June as coming before December, not after.

c. void clocksum(struct idatetime *result, struct idatetime *clock 1, struct

idatetime *clock2)
This subroutine adds together the date and time pointed to by the idatetime

structure clocki to the number of months, days, etc. in the idatetime structure pointed

126

to by clock2, yielding a new idatetime structure pointed to by result. This is useful when

from a given date and time one wishes to calculate a later date and time. The usual use

of this subroutine is, given the current date and time, to calculate the date and time after

some given delay has elapsed.25

It starts by adding the seconds together, and works from there up to the

months. After each addition, checks are made to ensure that the result is valid. If not

(e.g., 63 minutes is not valid), the result is corrected and any excess is carried over to the

next highest unit of time.

The fact that different months have different lengths is a bit of a nuisance

which is overcome by considering the three possible cases: a month can have 31 days,

30 days or 28 days. Leap years are ignored, since the real-time clock does not store the

current year. and so is unaware of leap years.

d. void show waketime(struct idatetime *waketime)

This function displays the date and time stored in the idatetime structure

pointed to by %saketime on the terminal.

e. void dump_iclock(struct idatetime *clock)

This subroutine displays the date and time (when stored in integer format)

on the terminal.

J: void get titne(struct idatetime *clock)

This subroutine asks the user for the date and time. Each response is

checked for correctness to preclude invalid dates and times being entered. The function

getintO is used to get the responses from the keyboard. The responses are converted to

binar'-coded decimal (BCD) format and stored in the structure whose address is passed

as a parameter to the function.

g. void show-waketime(struct idatetime *waketine)

This subroutine displays on the terminal the date and time when a time-out

will have been completed. The date and time are provided in the structure whose address

is passed as a parameter.

h. char timeout(int delaytime, int measure)

This subroutine has two purposes:

I. It initiates a time-out sequence.

2. It checks to see whether a time-out sequence has been completed yet. This is the
case when the wake-up time calculated previously has been reached.

25 While it could be used to add two dates together, this would not be particularly meaningul.

127

The subroutine calls the function allow ctrlinterruptsO to permit its being
interrupted during ground testing by the depression of a key on the terminal. It then

calls clockreadO to get the current date and time. This is converted to integer format

by a call to clockintO. If the parameter delaytime is the constant NULL, then the
function's purpose is to see whether a time-out set previously has expired. The function
clockcompare 0 is invoked to compare the stored date and time with the current date and

time. Its result is returned as the result of timeoutO.

If the parameter delaytime is nor the constant NULL, then the function's
purpose is to initiate a time-out sequence. The structure waittime is initialized to zero.

One of its elements is then modified to contain the number of delay units passed as the

parameter delaytime. Which element is modified is determined by the parameter

measure, which can take on the values MONTH, DATE. HOURS. MINUTES, or

SECONDS. The subroutine clocksum0 is called to add together the current time and

the amount of time to wait. The result is displayed by calling the function

show..s.aketimeo. The wake-up time is stored in a global structure, isaketime, so its

contents will be undisturbed the next time this function is called.

4. File convert.c

a. char atoh(char *ascii)

This function converts the two-character hexadecimal string pointed to by

ascii and converts it to a single character. 26 If the characters in ascii are in the range V

through '9' or 'a' through 'f. then they will be properly interpreted as hexadecimal digits.

Capital letters ('A' through 'F') and any other characters are treated as zeros. For ex-

ample, the character string "63" would be converted to the single character 'c'. since the

hexadecimal representation of this ASCII character is 0x63.

b. unsigned int atohexint(char ascii[1)

This subroutine converts a four-byte ASCII string of characters which rep-

resent a valid hexadecimal word into a single unsigned integer. No checks are made to

see that the character string is valid, but invalid characters are sufficient to cause the

subroutine to stop processing the character string. If no valid string of hexadecimal

characters is found, the value 0 is returned by this subroutine.

c. int atoi(char *s)

This function converts a four-character string to an integer. The string may

optionally include a sign (+ or -) in the first position. Successive characters will be

26 No check is made to ensure that ascii is only two characters in length.

128

converted to numeric values if they are in the range '0' through '9'. Conversion ceases

as soon as a character fails to fall within this range. No checking is done to ensure that

the number of digits provided can fit within the number of bytes reserved for integers.

This subroutine is from Bilofsky [Ref. 18].

d. char *bcd asc(char bcd)

This function converts a binary coded decimal (BCD) character into an

ASCII string. For example, the single byte 0x63 is converted to a two-character string

"63". The BCD character is first converted to an integer. It is assumed that an integer

occupies two bytes. If the leading nibble of the character is a 0, it will be converted to

a space (' '). No check is made to see if the BCD character is valid. The function returns

a pointer to the ASCII string representation.

Since it always uses the same storage location to hold the converted result,

the string should be copied to another variable before bcd_asciiO is called again. for the

old contents will be destroyed.

e. int bcd intchar bcd)

This function converts a binary coded decimal (BCD) character into an in-

teger. No checking is done to ensure the BCD character is valid. The integer result is

returned.

f. char *ctoh(char byte)

This function converts a character byte into a hexadecimal string represen-

tation. It returns a pointer to the string. Since it always uses the same storage location

to hold the converted result, the string should be copied to another variable before ctohO

is called again, for the old contents will be destroyed.

g. char bitbcd(int decimal)

This function converts an integer into BCD format. It will handle positive

integers in the range 0 through 99. No checking is done to ensure the integer falls within

this range. The function returns the BCD result as a single character.

h. char *itoa(int n, char[])

This function converts an integer n into an ASCII representation. It con-

verts the integer into digits by taking it modulo 10 and storing the digits in character

form in reverse order. Upon completion, it reverses the string in place. The result is

stored in the location pointed to by the parameter s. No check is made to ensure this

location has enough storage. This is the user's responsibility. However, in a machine

with two-byte integers, the largest possible integer will contain five digits. The user

129

should allow two extra locations for the sign and the terminating NULL character, or

seven characters in all. This subroutine is from Bilofsky [Ref. 18].

i. char tolower(int c)

This function converts upper case alphabetic characters into lower case

ones. This subroutine is from Bilofsky [Ref 18]. Its use here is a consequence of our

having used this C compiler during the early work on this project. This function is

provided in the library supplied with the Uniware C Compiler; with the Toolworks C

Compiler, its source code had to be included with our source code. It could have been

removed when we switched over to using the Uniware C Compiler, but it never was.

There exist other vestiges of our early use of the Toolworks C Compiler that have never

been eradicated.

j. char *uitoh(unsigned int word)

This subroutine converts an unsigned integer to hexadecimal ASCII string

format. For example, the unsigned integer '28' is converted to the character string

"IC" since that is its ASCII representation.

5. File delay.s

a. void delav(int n)

This function provides a timing delay of !1 x 10 ms . It is written in Z-80

assembly language. It will only work correctly if the system clock has frequency f = 2.5

MHz. It is adapted from a program written by Mr. David Rigmaiden of the Naval

Postgraduate School.

6. File expmnt.c

a. char ad-read(char port)

This subroutine will obtain one character from that channel of the Ana-

log-to-digital (A D) Converter whose address is pass as the parameter port. It functions

by writing anything at all to that port address (we chose arbitrarily to send a 0), then

by waiting for one 10 ms period during which the A'D converter responds, and then fi-

nally by reading a character from the same port. This is the character returned by the

subroutine.

b. int adtoint(char addata, unsigned long multiplier)

The purpose of this subroutine is to convert a character input from the

Analog-to-digital (A/D) Converter into an integer which represents the measured quan-

tity in more meaningful units than an arbitrary number in the range [0,2551, which is all

that the A, D converter can provide. It would be natural to perform the arithmetic

scaling of the input eight-bit number addata to the corresponding output value by per-

130

forming ordinary floating-point multiplication and division. This has one drawback in

a microprocessor application: the executable code to support floating point operations

takes up rather a large amount of memory. In tests we performed using the floating

point arithmetic operators provided with the Uniware C Compiler, the subroutines re-

quired two extra EPROMS of 8 KBytes apiece. We had the room in our controller to

accept this, but chose not to do so since our need for floating point arithmetic was lim-

ited to this one function. To program two complete EPROMS every time a new version

of the program was compiled solely to provide this one use of floating point of arith-

metic was not warranted, in our judgement.

The alternative was to perform the scaling operation with fixed point arith-

metic. The C programming language supports integer operations, but fixed point oper-

ations with a movable decimal point are not supported. This subroutine uses an implied

decimal point. As far as the subroutine is concerned, the operands are integers, plain

and simple. By using unsigned long integers, we have 32 bits of accuracy. permitting

numbers in the range [0,4.294967296 x 101]. For our purposes. we have have used a di-

visor of 106. This has the effect of reducing the range of useful numbers to 10.4294]

The purpose of these manipulations is to permit all the accuracy promised

by the provision of eight bits from the A D converter while avoiding floating point

arithmetic. The details of the operation are included as comments in the program listing,

so will not be repeated here.

c. void alter.pageO(struct pageOdata * pagezero)

This subroutine permits the user to alter the flags stored in page 0 of the

bubble memory. Since these flags describe the current status of the experiment, and also

indicate which area of the bubble memory is available for use, their alteration amounts

to initializing the status of the experiment to a known value. The use of this subroutine

is described in Chapter V. HOW TO GET THE EXPERIMENT READY FOR A

LAUNCH on page 63. It displays a menu using the same method used in so many other

functions in the control program. This method was already presented in the description

of the function mainO. A while loop presents the menu repeatedly until choice Z is

made. The menu shows the current values of all the information stored in page 0 of the

bubble memory. In most cases it also shows the other possible value of each flag. The

sole exceptions are the value of the next available page, which can fall in the range

[1,81911, and the flag RECORD start time, which is a date and time.

If any of the values is changed, page 0 is rewritten.

131

d. char bad idea to record(char show)

In the abridged experiment, the only phase of the experiment is record. It

would be unfortunate if the Solid State Data Recorder were restarted in record mode

after the launch had already occurred, for this would erase the recording of the launch

and replace it with the silence that fills the cargo bay in space, or possibly all the sounds

of the launch except the moment of ignition of the solid rocket motors. How could this

happen? A power fault, for whatever reason, would cause the controller to start at the

beginning upon the restoration of power. There is no obvious way for the controller to

be sure that it is still on the ground, which certainly is the only time when it is really a

good idea to initiate the record phase. Of course, it is easy to determine whether it is in

space or not simply by checking the status of the barometric pressure switches. Our

solution is simply to prohibit the initiation of record mode more than once in 12 hours.

If a mission is scrubbed, it will be at laast 24 hours before it is rescheduled. The 12 hour

delay will have elapsed by this time, and the abridged experiment could then be per-

formed as planned.

The long and the short of these considerations is that this function com-

pares the current time to the time when record was last initiated. This time is stored in

page 0 of the bubble memory. If insufficient time has elapsed. the function returns the

value TRUE, meaning that it is a bad idea to record. If 12 hours has elapsed, it returns

the value FALSE, meaning it is not a bad idea to record; record mode can be initiated,

in this case.

e. void display_pageO(struct pageOdata * pagezero)

This subroutine displays the contents of page 0 of the bubble memory on

the terminal.

f. void do-sweep(void)

This function performs the sweep phase of the unabridged experiment. It

turns on (and logs the fact that it has done so) the Analog-to-digital (A D) Converter

and the Solid State Data Recorder (SSDR). It then commands the SSDR to enter sweep

mode. After a 10 second time-out, it applies power to the Voltage Controlled Oscillator

(VCO) which is responsible for filling the Space Shuttle cargo bay with sounds of known

frequency.

Next it initiates a 13 minute time-out. The SSDR should signal completion

of the sweep phase before this much time has elapsed. If this does not happen, the

time-out allows the control program to stop waiting for it to do so. Upon completion

132

of the sweep phase, the dosweepO phase removes power from the VCO, SSDR, and A D

converters.

g. char initialize(void)

This subroutine extracts the status information from page 0 of the bubble

memory when the expmnt0 program begins to execute. It will remove power from the

Voltage Controlled Oscillator (VCO), which performs the sweep phase, and from the

heater subsystem, if either of these is on. It will not remove power from the other sub-
systems, which also might be on when power is first applied. How can this be, and why

does it not remove power from them? One way in which power might be applied is after
a brief power fault. If the fault affected the controller but not, say, the Solid State Data
Recorder (SSDR), and if sweep mode had been initiated prior to the loss of power, re-

moving power from the SSDR would have the effect of terminating sweep mode and this
would raise the possibility that an otherwise successful recording of the ignition of the
solid rocket motors would be foiled. The SSDR and other subsystems, therefore, should

not be interfered with at this point.

h. char Iisten(void)

This subroutine applies power to the matched filter circuit board. It then

calls ie-launched0. This function returns DLAUNCH if a launch has occurred, and this

value is returned by listenO, too. If a launch has not yet occurred, listeno checks to see

if the matched filter has detected the starting of the Auxiliary Power Units (APUs). If

so, the function returns the value DAPUON. If neither condition has occurred, the

function calls the subroutine look ahead discardo. giving the user (if any) to get out of

the listen() function by depressing any key on the terninal. Barring one of these three

conditions, the function will continue making these same checks indefinitely.

i. char Iogevent(char event)

This subroutine makes coded entries in the bubble memory of all events

which take place. While it is doing this, it takes readings from each of the channels of

the Analog-to-digital (A.D) Converter and stores the results in the same page of the

bubble memory in which the event code is stored. If the bubble memory is already full,

which would occur after 2 x 8191 = 16,382 events, the subroutine refuses to store any

more events. This will preclude the destruction of the records of earlier events. How-
ever, we do not expect this many events ever to occur on a single mission of the Space

Shuttle. The interval between successive events after the first two minutes of flight is five
minutes; at this rate, it would take nearly 57 days to fill up the memory.

133

There are two possibilities when the function prepares to write a page of
information to the bubble memory. Either this is a brand new page, or it is the second

half on an existing page of stored data. In the former case. the second half of the page

is filled with NULL characters. This effectively erases any data previously stored in this

upper half-page. The subroutine next reads the current date and time and stores this in

the structure where all the information is assembled prior to being transferred to the

bubble memory. The event code is passed to the function logeventO as parameter event
to be stored in the bubble memory. Each channel of the AD converter is sampled and

the results also are stored in the bubble memory. If the event code is CSSWEEP, then

the command to initiate sweep mode has just been issued, and the flag sweepstarted in

page 0 needs to be set to TRUE. If the event code is DPRESSURE, then the flag

launchdone in page 0 needs to be set to TRUE. Then the new record of information can

be written to the next available half of the next available full page of the bubble memory.

The page number and half page number are extracted from page 0 of the bubble mem-

ory. Page 0 needs to be updated, and this is done also.

j. void logmenu(void)

This subroutine provides the user with a menu for changing the contents

of page 0 of the bubble memory. Recall that this information describes the currcnt sta-

tus of the experiment. It is important that this information be initialized correctly prior

to the launch of the Space Shuttle. How to do this is described in Chapter V. HOW

TO GET THE EXPERIMENT READY FOR A LAUNCH on page 63.

The details of how the menu is generated are the same as explained in the

description of the function nienuO and will not be repeated here.

k. void monitor heaters(void)

This subroutine has the job of maintaining the temperature of the bubble

memory at a sufficiently high level that it can be operated safely. If it finds that the

current temperature is lower than the minimum desirable temperature (12"C) it will turn

the heaters on. If it finds that the temperature is above the maximum desirable tem-

perature (14"C), it will turn the heaters off. This is not the temperature above which the

bubble memories will lose their memory. Rather it is a temperature chosen to be slightly

higher than the minimum desirable temperature. If the temperature can attain this level,

the heaters will be shut off for a while to save power. If the temperature falls to the

minimum desirable level, this still is 2"C above the minimum operating temperature, al-

lowing a reasonable margin for safe operation. The 2"C spread is wide enough to pre-

clude excessively frequent operation of the relay switches, too.

134

I. void post launch(void)

This subroutine performs the caretaking functions that follow the successful

launch of the Space Shuttle. Its first action is to remove power from all subsystems.

It then initiates a five minute time-out. During this wait, it calls monitor-heatersO re-

peatedly to give them an operation to operate the heater subsystem. It also checks the

barometric pressure switches if they have not yet reported a completed launch. During

ground testing it is useful to have a way of interrupting this phase of the mission.

Calling look ahead discardO lets the user do so by pressing any key on the terminal.

At the completion of the five minute delay, logevento is called to record a "read A, D"

event. The function logevento takes care of reading all the Analog-to-digital Converter

(A D) channels whenver it is called. Finally, a call to voltagesjow() is made to ensure

that if the voltages on the 10V power busses falls to too low a level, the experiment will

be terminated. This will preclude an attempt to operate the bubble memories with in-

sufficient current, which could cause them to lose their contents.

in. void record(void)

This subroutine performs the record phase of the abridged experiment. The

first action taken by this subroutine is to read the current date and time and to place this

information in the structure of data to be stored in page 0 of the bubble memory. A call

to logeventO immediately after this has the effect of ensuring that this date and time are

transferred to page 0 right away, along with taking current readings of all the channels

of the Analog-to-digital (A,'D) Converter.

The record() subroutine then applies power to the A D converters and the

Solid State Data Recorder (SSDR), commands the SSDR to enter record mode, and in-

itiates a 20 minute time---.. The SSDR should report completion of record mode prior

to the expiration of this delay, but even if it fails to do so, the subroutine will be able to

terminate the record phase of the experiment. While waiting for the 20 minutes to

elapse, the subroutine calls baro switch(if that function has not previously reported a

successful launch. Upon the completion of the record phase, the subroutine removes

power from both the SSDR and the A D converter.

n. void short experiment(void)

This subroutine performs the abridged experiment. It first checks to see

whether a launch had occurred previously. This could be the case if a power fault had

caused the controller to start executing its program from the beginning. If a launch has

been recorded already, the subroutine refuses to put the Solid State Data Recorder

135

(SSDR) into record mode. This will prevent the successful recording of a launch to be
wiped out.

If a launch has not occurred previously, then the subroutine will wait until

it is alright to initiate record mode. This is indicated by the subroutine

bad-idea..to-recordO returning the value FALSE, meaning it is not a bad idea to start

record phase. Next the subroutine will call listen() to listen for the starting of the Aux-

iliary Power Units (APUs). The listenO subroutine will keep control until either the

APUs start, or until some indication of a launch is detected. At this point, the record
phase is initiated.

It is conceivable that at the end of the record phase, we would discover that

we had jumped the gun and that the Space Shuttle was still on the ground. To see

whether or not this is the case, the subroutine calls baro switcho. if that subroutine had

not previously reported that launch had definitely been completed. If no launch has

occurred, we are in a bit of a quandary. Is launch imminent? How long will it be before

it occurs? It would be nice simply to re-initiate record mode, but this consumes consid-
erable power. What is potentially worse, the power fault might occur at the moment

of launch. It will still be several moments before the barometric switches indicate that

a launch has occurred. Since we cannot ascertain whether the launch has occurred or

not, it is best to assume that it has and not to re-initiate record phase, which would erase

the recording of the launch. So we have adopted the solution of waiting until at least

12 hours more have elapsed before entering the record phase again.
At the successul completion both of record phase and a launch, the

short-experiment0 subroutine calls post_launch0 to perform all the caretaking functions

required during the Space Shuttle's mission.
o. void show event(char event)

This function is used to display event codes stored in the bubble memory log

in a readable form on the display terminal. It does this by displaying the appropriate
character string from an array of strings which describe the various codes.

p. void shut down(void)
This function removes power from any subsystem which currently is re-

ceiving power. It calls logeventO to record any actions it takes.

q. char ssdrmode(char mode)
This subroutine issues commands to the Solid State Data Recorder (SSDR).

If the command is unsuccessful the first time, it will make several more tries before giv-

ing up. Once the command has been issued, the subroutine waits for 20 ms and then it

136

checks the status code returned by the function ssdr.statusO. The desired response from
the SSDR is that the commanded operation has been completed successfully, which is
indicated by the return of the constant NORMOP. The subroutine ssdrmodeO returns

TRUE if this occurs; FALSE otherwise.

r. char ssdrstatus(void)
This subroutine reads the status code from the Solid State Data Recorder

(SSDR) and returns it to the calling function.

s. char voltages low(void)

This function checks the channel of the Analog-to-digital (A: D) Converter
which allow the measurement of voltage on the 1OV bus. The value read is converted
to voltage by the function adtointO. If that voltage falls below the minimum voltage

desirable on the 1OV bus, then the function returns the value TRUE, meaning that the
voltages are too low, and that the experiment should halt. Otherwise it returns the value

FALSE.

t. char we-launched(void)

This subroutine first calls the function baro sisitch0 to see whether the ba-
rometric pressure switches have detected an ascent of the Space Shuttle. If this has oc-
curred, or if the Vibration-activated Launch Detector has detected a launch, this
function returns the value DLAUNCH. Otherwise it returns the value FALSE.

7. File fputc.c

a. int fputc(int chr, void *device)

The UNIWARE compiler provides the standard C output subroutine

printfO to provide output to the standard output device. However, this subroutine re-
quires the user to provide a subroutine fputc() to handle the output of a single character
to any arbitrary device. We only support output by fputcO to the RS-232C terminal, so

this subroutine is specific to that device.

This function calls the subroutine allow ctrl interruptsO to permit the user
to interrupt operation of the control program. The subroutine will not output a char-
acter if, upon checking, it finds there is no terminal attached to the serial interface port.

Thus, when the experiment is operating, calls to printfO are of no effect unless there is

a terminal connected.

The subroutine returns -I if there is no terminal connected. This is the
code specified by UNIWARE if fputcO is unable to do the output operation. If there

is a terminal attached, fputcO repeatedly polls the serial interface, waiting for it to be

137

ready to accept output data. It then outputs the character, and returns that character,

again as specified by UNIWARE. [Ref. 17: Compiler Section, pp. 45 and 521

8. File global.c

This file contains the declarations of variables used throughout the control
program. The author's predilection is to avoid the use of global variables. However, it

can sometimes become so awkward to observe this preference as to make it silly. It is
desirable to hold the use of global variables to a minimum, however.

9. File inout.c
a. void allowctrl interrupts(void)

This subroutine makes it possible for the user to interrupt the execution of

the control program. Whenever it gets control, it calls the function look.ahead0 to see

if any key of the terminal has been depressed by the user. If not, then the function re-
turns without further ado. If a key has been depressed, however, it may have been one
of the two control keys CTRL Y or CTRL S. If so. the function termin0 is called to
remove the character from the input buffer, and to respond appropriately to the input

control character.
b. void dunp(unsigned int address, unsigned int length)

This subroutine displays the contents of a section of memory on the display

terminal. The variable address designates the address of the first character of data to

be displayed. The variable length specifies how many characters to display. The display
shows a hexadecimal representation of every character in the chosen section of memory,

and if that character has a printable form, that form also is displayed. This function is

of value only for debugging the control program.

c. char gethe.r(void)

This subroutine obtains a hexadecimal string from the terminal. Up to

HSTRLEN characters will be accepted. Processing will cease as soon as a character not
in the ranges '0' through '9', 'a' through 'f', or 'A' through 'F' is entered. The input
string will be converted to a single character by calling atoho, and this character will be

returned. For example, the string "6a" would be converted to the ASCII character 'j',
whose hexadecimal representation is Ox6a. This subroutine is useful for getting one-byte
system port addresses from the user if he is more likely to know them in hexadecimal

than in decimal.
d. unsigned int gethexint(void)

This subroutine is very similar to gethex(), except that it accepts two hexa-

decimal bytes, not just one.

138

e. int getint(void)

This subroutine obtains a decimal string from the keyboard. Up to
STRLEN - I digits can be entered. Processing will cease as soon as a character not in
the range '0' through '9' is entered. The input string will be converted to an integer by
calling atoio. and this value will be returned.

f. int getpageno(void)

This subroutine obtains a page number in bubble memory from the user.
Valid responses are in the range 0 through .MAXPAGE. It uses the subroutine getinto

to obtain the response.

g. char look ahead(char *character)

This function checks to see if a key has been pressed on the display terminal.

Of course, if there is no terminal attached, there is no point in even looking, so the

function returns instantly in this case with a value of FALSE. The variable

console-data-available is one of two variables known to all functions in the file inout.c.

It will have the value TRUE if the function look ahead0 or the function terrin0) dis-

covered previously that there was a character available to be read. The look ahead0

returns this character to the calling function for it to inspect, but it does not remove the

character from the buffer. Further calls to look aheadO or to termin0 would obtain the

same character.

If there is no character already in the buffer (that is, if

console data available is FALSE,) then look aheadO checks the RS232C interface to see

if a key has been pressed. If so, the character is read and placed in the variable

console-buffer for future use by look aheadO and terminO. It also is returned to the

calling function, and the value of console-data available is set to TRUE since a character

now is in the console buffer.

h. char termin(void)

The primary purpose of this subroutine is to read a character from the ter-

minal whenever the latter has one available. This condition is known to be true when-

ever bit PRTRDY of port PRTCTRL is a 1. The input character is returned to the

calling function.

In order to permit the control program to be interrupted, however, the

function terminO interprets the characters CTRL S and CTRL Y specially. CTRL S is

interpreted to mean "stop displaying data on the display terminal" if data is being dis-

played, or "start displaying data on the display terminal" if the display has already been

halted by CTRL S. In other words, the CTRL S switch operates as a toggle switch to

139

stop and start the display of data. CTRL Y is interpreted to mean "call the diagnostic

subsystem menu". We do not wish this to be done more than once at a time, for oth-
erwise we might make so many recursive calls to the program menuo that the stack

would be corrupted.

The variable allow menu call will be TRUE the first time termin0 is called.

If CTRL Y is entered, allowmenu-call is set to FALSE, and further calls to menuo are
precluded thereafter. It is only returned to the value TRUE if the menu() program is

completed by the user later.

The variable waitingfor Ctls will switch from FALSE to TRUE or back

again each time CTRL S is entered by the user. Data from the keyboard will only be

accepted when this variable is FALSE, in which case the display has not been halted.

The variable etri valid data will be a copy of the variable

console data available described earlier.

If no data has been read into the console buffer previously by termin0 or

by look aheado. then termino will wait until a character is available. Once this occurs,

the variable console data available is set to FALSE, since ternin0) has filled and emptied

the console buffer all at once. A switch statement allows the character to be interpreted.

i. void testinput(void)

This subroutine asks the user to specify a port address in hexadecimal. It

then reads a character from that port and displays it on the terminal.

j. void testoutput(void)

This subroutine asks the user to specify a port address in hexadecimal, and

then asks for a hexadecimal byte to be sent to that port. The data is accordingly output

to the port.

10. File main.c

a. void memory_dump(void)

This subroutine asks the user for the first address in memory whose con-

tents he wishes to inspect, and for the number of characters which he wishes to see dis-

played. It then calls the subroutine dumpo to honor the request. This function is only

useful for very low-level debugging of the software.

b. void testio(void)

This subroutine presents a menu permitting the user to send data to any

port, and to read data from any port, in the system. The method of implementing a

menu is the same as that presented in the description of the function menu() and will not

140

be repeated here. For output to a port, the function testinputO is called. For input from

a port, the function testoutputO is called.

11. File mbrk.s

a. char *mbrk(long size, long *realsize)

This subroutine is written in Z-80 Assembly language. It is described in

[Ref 17: Compiler section, p. 511, from which it is drawn.

12. File newio.s

a. char input(char port)

This subroutine is written in Z-80 Assembly language. It inputs a character

from a port and returns it to the calling function.

b. void output(char port, char data)

This subroutine is written in Z-80 Assembly language. It outputs a char-

acter to a port.

13. File pow er.c

a. void power-status(void)

This subroutine returns the status byte from the POWERIN port. This

status is described in Table 3 on page 16.

b. char power write(char command)

This subroutine issues commands to the power circuit board. Valid com-

mands are SSDROFF and SSDRON (to turn the Solid State Data Recorder off and on);

VCOOFF and VCOON (to turn the Voltage Controlled Oscillator off and on); ADOFF

and ADON (to turn the Analog to Digital Converter board offand on); MATFOFF and

MATFON (to turn power to the matched filter, launch detector and barometric switch

off and on); and HEATOFF and HEATON (to turn power to the heater circuit off and

on).

A command can be executed by writing it to the POWEROUT port and

then setting bit PWRSTROBE in port C, to a 1. A delay of length PWRDELAY is re-

quired before bringing that bit to 0 again. Another delay of the same length is then re-

quired. These delays ensure proper functioning of the relays. Each bit in the status byte

returned by the function power statusO indicates whether the associated relay is on or

off. The bit is 0 if the relay is on; 1 otherwise. The powerwriteO function examines the

bit corresponding to the relay it attempted to switch. A TRUE is returned if the relay

is in the desired position; FALSE is returned otherwise.

141

14. File start.s

This file contains the controller's start-up code. It is written in Z-80 Assembly

language. Whenever the Z-80 receives power, it starts executing from location OxOOOO.
The start-up code initiates the stack pointer to the value STACKTOP and then causes

a jump to START. All other Z-80 interrupt locations are initialized such that they cause

a jump to the same location, since interrupts are not used by the controller. At START,

the x register is initialized to 0. This register is used by the C compiler to point to pa-

rameters and local variables within C programs.

Memory may be requested by C programs using the mbrk0 function provided

with the UNIWARE C Compiler. The start-up code uses a variable MBRKPTR to

point to the next available address of allocable memory. Initially this variable is set to

MIALM, a global variable set in the file \vibro~control\object\spec to point to the begin-

ning of all allocable memory. Once nibrkO has obtained some memory, it keeps it. so

the start-up code never needs to reclaim it. Consequently, MBRKPTR can only in-

crease; it can never decrease.

ZRI.SZ is the number of R.M locations starting at ZRAI\ which are used

for uninitialized, static variables in the C progranmming language subroutines. The

start-up code writes zeros to all these locations, because the C progranmming language

specification is that uninitialized static and external variables be initialized to 0 by the

compiler [Ref. 16: p. 1981.

IRAMSZ is the number of RAM locations starting at IRAM which will contain

initialized data. This data is stored in ROM locations starting at RAM DATA at the

time the program is burned into ROM. The start-up code copies it from RONI to RAM.

Finally, control is passed to mainO, the user's C program. If main) should ever return

control to the start-up code, a halt instruction is executed. The start-up code is adapted

from an example given in [Ref. 17: Compiler Section, pp. 13-15.1

142

Table 12. CONTENTS OF SUBDIRECTORY \VIBRO\CONTRLR\BATCH

File [Contents
This batch file simplifies the assembly of Z-80 assembly lan-
guage source code. To use it, type asm < source filename > .s.
For example, to assemble the file delay.s, type asm delay.s.
Note that the file type need not be s, but whatever it is, it must

ASM.BAT be present. Use of s is recommended for clarity. The proce-dure produces object files in subdirectory \vibro~contrlr\object

and assembly code list files in subdirectory \vibro\contrlr\list.
See the description of the batch file asmlist.bat for instructions
on how to produce this listing file, which includes all addresses
supplied by the linker.

This batch file produces a listing of the assembly language
source file generated by the Z-S0 assembler. To use it. type
asmlist < filename.filet ype>. The output is appended to the

ASMLIST.BAT file \temp\print. It can be printed by use of the batch file
promout.bat. These listings include all global addresses sup-
plied by the linker, provided \vibro\contrlr\vibro.out has been
generated by promlink.bat.

This batch file simplifies the compilation of C source code. To
use it. type c < source file name > .c. For example. to compile
the file vibro.c, type c vibro.c. Note that the file type need not
be c. but whatever it is. it must be present. Use of c is recom-
mended for clarity. The procedure produces object files in

C.BAT subdirectory \vibro\contrlr\object and assembly code list files in
subdirectory \vibro\contrlr\list.

See the description of the batch file asmlist.bat for instructions
on how to print listing files, which show all addresses supplied
by the linker.

This batch file produces a listing of any MS DOS file. To use

LIST.BAT it. type list < filenanme.filetype >. The output is appended to
the file \temp\print. It can be printed by use of the batch file
promout.bat.

143

This batch file appends a copy of the load map into
\temp\print. It can be printed by use of the batch file prom-
out.bat.

The load map shows the absolute addresses at which the eight
regions of code produced by the compilation, assembly, and
linking steps are placed. It is useful to have this so that you
know whether the controller has enough RAM and ROM in-
stalled to hold the output program, The listing shows the
starting address of each region and the number of bytes it oc-
cupies. Regions reset, code, const. string, and data all must be
stored in ROM initially. Of these, only data belongs in RAM
eventually, yet it must be stored in ROM initially.

LOADMAP.BAT The reason is that it contains C variables whose values havebeen initialized. If they were not stored in ROM. those values

would not be available at execution time. The start up routines
in \vibro\contrlr\asmsource\start.s cause these initialized vari-
ables to be copied from ROM to their proper locations in
R.-AM. These locations are those shown in the load map.

Thus, in addition to the ROM space required for the other four
regions, be sure to allow enough room for the data region to
be loaded into ROM. too. For example, if there is only one
SK ROI installed at location x0000. but the load map shows
that more than SK of ROM is required, then there is insuffi-
cient ROM in place. Either more must be added, or the pro-
gram must be reduced in size. How to load the executable
program into ROM is described below in 2. Getting the Exe-
cutable Program into EPRO.M on page 146.

This batch file will produce a listing of all source files, all batch
files, a load map, and a symbol listing. The output will be ap-

PRINTALL.BAT pended to the file \temnp\print. Normally you would first empty
this file using readvout.bat. After producing a complete listing.
it could be printed on the printer using promout.bat.

This batch file simplifies the conversion of the object modules
into an executable output program. To use it. just type prom-
link.

It creates two output files. The first of these is
PROMLINK.BAT \vibro\contrlr\vibro.out. It contains information about the ad-

dresses assigned by the linker to global variables. This file is
used by the batch file promsym.bat.

The other file which promlink.bat produces is vibro.hex which

can be loaded into an EPROM.

This batch file causes the file \temp\print to be printed. The

PROMOUT.BAT latter file contains the output of the list, asmlist. loadmap, or
promsym batch file executions. It does not erase \temp\print.
Use readrout.bat to do this.

144

This batch file appends a listing of all the variables known
globally throughout the control program to the file
\temp\print. These include both C language source code vari-

PROMSYM.BAT ables, Z-80 assembly language global symbols, and several
symbols defined by the linker specification file. This listing is
useful in determining how variables have been declared and in
finding the absolute addresses of symbols. It can be printed
by use of the batch file promout.bat.
This batch file should be used before using any of the follow-
ing:

1. list.bat

2. asmlist.bat

READY- 3. printall.bat

OUT.BAT 4. promsym.bat

5. loadnap.bat

Its purpose is to empty the temporary files \temp\temp and
\temp\print prior to their being used by those other batch files.
Once used. you need not use it again unless you have already
printed the contents of the temporary file and need it no lon-
ger. or unless you wish to discard it for some other reason.

C. PROGRAM MAINTENANCE

This section describes how to compile a new version of the controller program: and

how to get an executable version of that program into an EPROM. A basic familiarity

with Microsoft MS DOS is assumed. The file organization is described in APPENDIX

D. HIERARCHICAL ORGANIZATION OF SOFTWARE FILES on page SS.

1. Procedures for Generating a New Executable Program

a. Compile the C source files

For each source code file written in the C language, type c < filename > .c.

b. Assemble the Assembly Code Source Files

For each source code file written in Z-80 assembly language, type

asm < filename > .s.

c. Link Modules Together

Enter the command promlink. This links all executable modules together,

generating an executable program module in file vibro.bin in subdirectory \vibro\contrlr,

which becomes the current directory upon completion.

145

Table 13. CONTENTS OF SUBDIRECTORY \VIBRO\CONTRLR\CSOURCE

File Contents

BUBBLE.C Contains programs which operate the bubble memory module
on the controller board.

CLOCK.C Contains programs which operate the real time clock on thecontroller board.
CONVERT.C Contains programs which perform conversion of data from one

format to another.
Contains programs which are specially designed for use with

EXPMNT.C the Vibro-accustic Experiment. They are not usable by other
applications, although they might be tailored to them.

FPUTC.C Contains the routine fputco.
Contains the declarations of the few variables which are de-

GLOBAL.C clared with global scope (i.e., which are known to all subrou-
tines).

INITIAL.C Contains programs which initialize both NSCSIOA
RAM-I 0-Timer chips on the controller board.

INOUT.C Contains programs which handle input from and output to any
device.

Contains the highest level of programs which operate the con-

MAIN.C troller, including the C subroutine main). These include most
of the menu-driven routines which are executed if there is a
terminal attached to the controller when it receives power.

Contains programs which operate the electrical power relay
POWER.C board in the controller. This board supplies power to various

hardware subsystems.

2. Getting the Executable Program into EPROM

a. Copy the Executable Program to a Diskette

Place a 5 1,14 inch diskette in drive B. Then enter the command copy

vibro.hex b:. This puts a copy of the file vibro.hex on the diskette. This file contains a

hexadecimal format of the code which, when loaded into an EPROM, will allow the

controller to function.

b. Prepare to Write EPROMs

We have acquired the Intel program PCPP PC Personal Programmer to

load data into EPROMs. Take the diskette to the IBM Personal Computer (PC) with

the EPROM programmer. This PC is located in Space Lab #2, Room 102, Bullard Hall,

Naval Postgraduate School. Be sure you have enough EPROMS available.

146

Table 14. CONTENTS OF SUBDIRECTORY
\VIBRO\CONTRLR\ASMSOURC

File Contents

This file contains the routines bubreadO, bubwrite0 and bubx-
fer(. These routines had to be written in assembly language

BUBRW.S because the compiled code would not execute fast enough cor-
rectly to perform data transfers with the bubble memory con-
troller. Each routine looks just like a C language subroutine
to the calling routine.
This file contains a delay routine written in Z-80 assembly

DELAY.S code, but it can be called as if it were a C language subroutine.
Its purpose is to provide delays in multiples of 10 ns in situ-
ations where the hardware requires it.

This is a routine supplied with the UNIWARE C compiler. Its

MBRK.S purpose is to allow C programs to request memory through the
standard allocation routines malloc() and callocO
[Ref. 17: Compiler section. pp. 50-511.

This file contains the two routines inputo and outputO. They
are written in Z-S0 assembly code, but they can be called as if

NEWIO.S they were C language subroutines. They provide the ability to
read characters from and write characters to any valid port
address.

This file contains the Z-80 initialization code. such as an ad-
dress where execution should begin, interrupt vectors, code for

START.S initializing RAM, and a call to the main() program. located in
the C source file vibro.c. It is adapted from code provided by
UNIWARE.

To ensure they are empty, place them in the EPROM eraser and turn on the

fluorescent light to erase their contents. While this is going on, and once the PC is

booted up, enter the command cd pcpp at the command line. This will make pcpp the

current subdirectory, and so the program pcpplod can be issued to initialize the program

which will write the file vibro.hex into the EPROMs. Once this has been done, enter the

command ipps channel(3), which actually invokes PCPP.

PCPP now has control. Enter the following commands:

t 2764 This command allows 2764 EPROMs to be used.

i 80 This specifies that INTEL 8080 hex format files are being used.
This is the format of the program in the file vibro.hex.

147

Table 15. CONTENTS OF SUBDIRECTORY \VIBRO\CONTRLR\HEADERS
File Contents

BUBBLE.H This file contains the extern declarations of the routines in
bubble.c.

BUBRW.H This file contains the extern declarations of the routines in
bubrv.s.

CLOCK.H This file contains the extern declarations of the routines in
clock.c.

CONVERT.H This file contains the extern declarations of the routines in
convert.c.

DELAY.H This file contains the extern declarations of the routines in de-
lay.s.

EXPNINT.i This file contains the extern declarations of the routines inexpinnt.c.

GLOBAL.H This file contains the extern declarations of the variables inglobal.c.

INITIAL.H This file contains the extern declarations of the routine in ini-
tial.c.

INOUT.t! This tile contains the extern declarations of the routines in in-
out.c.

MAIN.H This file contains the extern declarations of the routines in
main.c.

NEWIO.H This file contains the extern declarations of the routines in
neio.s.

POWER.H This file contains the extern declarations of the routines in
power.c.

This file contains definitions of all constants used by the C
VIBRO.H routines. It also contains definitions of global structures used

throughout.

b This performs a check to ensure the EPROM currently loaded in
the socket is blank. It should be obvious that a blank EPROM
must be inserted in the slot before performing this check.

c:vibro.hex (0000,lfft t p

c:vibro.hex (2000,3fff) t p

c:vibro.hex (4000,50T) t p

c:vibro.hex (6000,6c23) t p

c:vibro.hex (eOOO,e 127) t p (0c24)

148

The last five commands copy the program instructions from the diskette into the EP-

ROM. The numbers in parentheses are the addresses which are to be loaded into each
EPROM. A new EPROM should be inserted into the socket prior to executing each of

the first four commands. The number 0x6c23 in the fourth command is one less than

the number RAMDATA in the symbol table. The number 0e127 is one less than the

value of ZRAM in the symbol table. The number 0x0c24 is 0x6000 less than the number

RAMDATA in the symbol table. This number tells the PCPP program where in the fi-

nal EPROM to begin writing this section of data. Since the EPROM addresses all are

in the range [0x0000,0x1fff], subtracting 0x6000 from the actual starting address is nec.

essary to get the address into the proper range. Note that the last command causes the

data which eventually will be placed in RAM to be loaded at the end of all the data

which is to remain in EPROM locations. It is conceivable that this information would

not fit onto the end of a single EPROM but might spill across the end and require an-

other EPROM. This would require modifying the instruction sequence shown above.

For details, consult [Ref. 201. The command exit will terminate the operation of the

PCPP program.

This completes the loading of the control program into EPRONI. The EP-

ROMs can now be loaded into the controller for testing.

149

APPENDIX H. CONTROL PROGRAM SOURCE CODE

A. FILENAME SPEC

Specification file for the Controller hardware. Also a"

companion files "start.asm" and "mbrk.asm". This specification
assumes 32K of ROM at address OxOOOO, and SK of RAM at address Oxe000.

*--

partition (

overlay C
region) reset Eaddr a 011 /* reset vector 5/

region) code, const, strings / other ROM 5/

RAMDATA = $i /* ROM to initialize region ram 5/

Region ram is initialized at runtime startup by

copying data from RAMDATA to IRAM. The data must

actually be linked to its RAN address 1IRAM) to get

correct variable addresses, but must be

programmed into ROM here. By hand, you must
ensure that ENDOATA <= ENDROI. IENDOATA is below)

ENDROM OxO000 / end of ROM 5/

IRAN = 0xe000 /* RAM starts here. 5/

region C) data (addr=Oxe000 ; /* RAM to be initialized on reset 5/

IRAMSZ : - IRAMs /* # bytes to copy from RAMDATA 5/

ENDOATA c RANOATA + (0 - IRAH); /* compare this against ENDRON 5/

ZRAM = $; /5 Pointer to start of ram region. 5/

region () ram /* RAM to be zeroed on reset 5/

ZRASZ z $ - ZRANi /* # bytes to zero on reset 5/

NRAH z $s
region) mbrkram(sizez0x2SO1j /* RAM available to malloc() 5/

MRAMSZ = $ - MRANI

region C) stack (sizenOx500; / stack of at least OxGO0 bytes*/
STACKTOP *OxlO000 /* stack pointer reset value 5/

) p IsizeoOxlOD00]

B. FILENAME VERSION.H

extern void version(void);

150

C. FILENAME VERSION.C

void version!voidl)

void version(void)

printf(
"inmrControl ,program for the Spac. Shuttle Vibro-acoustic Experiment. ,r r\

Version 6.19 April 1#, 299n r");

D. FILENAME VIBRO.H

/* vibro.h e/

#define TRUE Oxff

%define FALSE OxO0

define EXPERIMENTOK 9X11 / As a parameter to menuo 3, this true flag

permits the experiment to be run. w/

#define SELECT Oxl /* Select appropriate power relay. */
#define ASCII 0 /* Used as a parameter to showbubbuffo). 5/

#define HEX 1 /* Used as a parameter to showbbufft. /

#define NULL OxO /* The following are ASCII definitions. 5/

adef ine BELL Ox07

*def ine BS OxO

#define CTRLS OxI3 /* Permits output to be halted and restarted. 5/

def ine CTRLY Ox19 /* Permits the menuo) program to be entered

recursively anytime console I/O takes place.

Only one recursive call at a time is supported. s/
Wdefine SPACE Ox20

*define DELETE Ox7f

!;define STANDBY Ox01 /* These are masks for the SSDR commands and. 5/

Idefine SHEEP OxOZ /* status codes. e/
#define SCROLL Ox04

#def ine LAUNCH Ox08
#def ine RECORD OxlO

1def in@ PLAYBACK Ox2O

Wdefine OPCOtP Ox4O

Wdef ine NORIOP OxO0

*define TRIES 3 / 11- er of tims to try something before giving up. 5/

*def ine BLOCKSPERPAGE 2
/* The number of data blocks per page

of bubble mmory. */
define RECORD-DELAY 12 / The nuier of hours to wait after initiating

RECORD mods before daring to restart it. 5/

/* The following constants are used by the routine adtointi 3 to convert

values read by the A/D converter into the corresponding real-world units. 5/

define MULTTEMP 1960784L / uK per unit on the A/ converter. e/

151

def in KJLTlOV 4862745L /5 lOE-2V per unit on the A/D converter. /

def ins ULT_20V 972590L /* IOE-2V per unit on the A/O converter. a,

define MIN_VOLTAGE_10 8SO / 8.50 V is the minimum permissible
voltage on the IOV bus. The constant
represents this in units of IE-2 V. /

define MZN.OPERATING_TEMP 283 / The buble memories should not be operated
if the temperature falls below 10 degrees C
or 283 K. 0/

#define MIN_DES!RABLETEMP 28 /0 The heaters should be on if the temperature
is below Z5 K. /

#defins NAX._DESIRABLE_TEMP 287 /c The heaters should be off if the temperature
is above 287 K. c/

Idefine WDATA Ox4 /* I/0 port for the controller's bIbble memory. 0/

define BIECTRL Ox4l / Control and status port for the BMC. 0/

/* The following codes are commands to the bubble memory controller. /

#def ine BABORT 0x19
#define BINIT Oxll
#define BFIFORESET OxlD
#define BIRBLREG 0x16 /* Mrite boot loop register. /

*def ins BREAD 0X12
*def ine BHRITE Ox13
#&efins BLDPAR, OxOb /0 Load parametric registers. /

#define BTRIES 30000 /0 Bubble commands should be written this /

/0 many times before giving up in disgust. /

/0 The following are bubble memory controller status codes. /

*def ins BBUSY Ox80
*def ins BOPCOMPLETE Ox4O
#def ine BFAIL Ox2O
#def ine BTIMING Ox02
#def ins BFIFO Ox01

#define SBUSYBIT 7 /0 These constants specify which bit in the /

#define BOPCOIPLETEBIT 6 /0 BMC status bit is used for which purpose. /

*def ins BFAILBIT 5

*def ine BFIFOBIT 0

#deffine BNEVER_READY 0
*define BXFER_GOOD 1
*def ins BXFER_BAD 2
#define PAGELENGTH 64 /* The number of bytes in a page of bub~ble memory. 0/

define MAXIPAGE 8191 / greatest valid bubble memory page number. 0/

Idefins ADPOINTS 10 /0 The ruder of analog quantities to be onverted to
decimal. /

define STRLEN 7 / Number of characters to allow for integer
cheracters, including a null terminator. 0/

efin HSTRLEN 2 /0 Iader of characters to allow for hexadecimal
characters*/

41defins HEXINTSTRLEN 4 / 1Number of characters in a hexadecimal word. 0/

define OIIXPHIDTH 16 / N-daer of bytes in a line of a memory dump. /

152

/* Bit definitions for port C of NSC8lO 41. (Bass address is OxO0.1

Bit # MEANING
5 Spare output.
4 Power strobe output (Active high).
3 One if no terminal is connected to the RS-232C port.

Zero if a terminal is connected.
2 Barometric pressure drop detection after launch

(active high).
1 Vibration detection at launch(active high).
0 Matched filter detection of Auxiliary Power Unit 1APU)

prior to lauach (active high).
a,

#define TERMION OxO8 /* Points to the terminal connection line in NSCSIO *1,
Port C, Pin 3. It is zero when the terminal is

connected. */
#defins BARO_ON OxO4 /* Barometric pressure drop line. */
#define VIBON Ox02 /* Vibration detection line. W/
Idefine APU_ON OxOl /* APU detection line. */

/I Bit definitions for port C of NSC8lO #2. (Base address is Ox2O.)
Bit # Meaning
5 RESET* line for the bubble memory. This line should be

zero whenever power is applied to or removed from the
bubble menory. It is one normally. The purpose of
making it zero during power switching is to avoid havin
to meet the strict requirements for power rise atd fall
tims which would be necessary otherwise.

4 Power line for the bubble memory. This line is a one
to apply power; a zero to remove it.

3 End of analog to digital conversion. (Active high?)
2 Spare input.
1 Spare input.
0 Heater control output (active high).

define READC1 Ox02 / Points to the NSC81O #1, Port C, R/W register. W/

#define BCLRC1 OxOa /* Points to the NSCSIO 31, Port C, Clear register. Cl

define BSETC1 OxOe / Points to the NSCSlO #1, Port C, Set register. */
#define BCLRC2 Ox2a /* Points to the NSC8lO #2, Port C, Clear register. e/
#define BSETCZ Ox2e /* Points to the NSC810 #2, Port C, Set register. */
Rdefine PWRSTROBE OxlO /* Points to the power board relay strobing line. To

turn on a peripheral, you must strobe this line high
for PHROELAY * 10 ms. This line is NSC81O #1,
Port C, Pin 4. */

/I These are port addresses for the A/D converter. Character strings which

identifiy these are defined in file "global.c". Be sure that changes
in one place are matched in the other. */

odefine VOLTO Ox80 /* Voltage from 20 V bus. Cl

Idefine VOLT1 Ox81 /* Voltage from -20 V bus. Cl
ldefine VOLT2 Ox82 / Voltage from +10 V bus. Cl
Idefine TEMPO 0x83 /* Temperature from shelf above SMC. /

Ildefine TEMPI Ox84 /* Temperature from undersids of speaker. a/
Odefine TEMP2 Oxes /a Temperature from shelf above battery. a,

Idefine TEMP3 0X86 /* Temperature from batteries. */
define TEMP4 0x87 / Temperature from controller's backplan ,
#deflne TEMPS Ox88 /* Temperature from card 8 of BMC. C/

#define TEMP6 0x89 /* Temperature from card 9 of SMC.

153

#define PWRDELAY 2 /* The number of 10 as units that the power board
strobe should be applied to turn on a relay. Si

#define BUBRST Ox2O /* Points to the RESET* line in NSC810 32, Port C,
Pin 5. */

define BUBPNR OxiO / Points to the bubble power line in NSC810 32,
Port Cp Pin 4. /

define BUBDELAY 5 / Number of 10 as units to wait mn operating the

bubble memory. /

define MORI Ox07 /* See the documentation for a description of the 5/

#define ODRAl OxO4 /* use of these ports. 5/

#def ins DDRBI Ox05

#deffine DORC1 Ox06
#def ins THOl 0x18
*def ins TOLB1 Ox1O
#define TOHB1 OXll
#define START0l Ox1S
#define MDR2 0x27
#define DDRA2 Ox24
#define DDRB2 0x25
#def ine DDRC2 0x26

#def ine TMO2 0x38

#define TOLB2 Ox30
#define TOHB2 0x31
#define STARTO2 0x35

#define PRTDATA OxcO /* Port number for data from RS-232C interface. 5/

#define PRTCTRL OxeO /* Port number for control information from RS-232C
interface. */

#define PRTOUTRDY OxOl /* Bit zero of the PRTCTRL byte is a one if the printer
is ready to accept data and zero otherwise. */

#define PRTRDY OxOZ /* Bit one of the PRTCTRL byte is a one if there is
data to be read and zero otherwise. 5/

/* Bit meanings for the power status byte at address PONERIN.
Bit 3 Meaning
5 1 if heater circuit is offs 0 if it's on.
4 1 if matched filter (APU detection) circuit is offs

0 if it's on.

3 1 if analog to digital converter IA/D) circuit is off)
0 if it's on.

2 1 If voltage oontrolled oscillator IYCO) is offs
0 if it's on.

1 I if solid state data recorder (SSOR) is offs
0 if it's on.

The same bit assignments apply to the power command byte at address POWEROUT,
but the bits have a different mewning. A one in bits 1-5 is used to select the
corresponding relay. A zero is used to cause that relay to be ignored.
A one in bit zero causes the selected relays to be switched on. A zero in
bit zero causes the seleoted relays to be switched off.

define PHRRELAYS 5 / The number of power relay switches. 5/

define POHEROUT OxOl / Port address for power control board commands. 5/

154

define PONERIN 0x21 / Port address for power control board status. 0/

define SSOROUT OxO0 / Port address for SSOR commands. 0/

#define SSORIN OX01 /* Port address for SSDR status. /

#define SSOROFF OxO2 /* The following are commands for applying or removing*/
define SSORON Ox03 / power.*/
*define VCOOFF OxO4
*define VCOON OxOS
*define ADOFF Ox08
*define ADON Ox09
Idef ins HATFOFF OxlO
*define NATFON Oxll
Udef in HEATOFF Ox2O
*define HEATON Ox21
#define ONBIT OxOl /* The lowermost bit of a power coinrd is I to turn

power on, 0 to turn it off. /

define NOPOIER OxCl / Mask for upper 2 bits and bit 0 in power. These

bits have no meaning wdn you examine the power
board's status.*/

/* These are event codes used for logging events. V/
/* Dont' alter these codes without adjusting show-event() accordingly. */
/* A prefic C means COMMAND ISSUED.

A prefix CF means COIIAND FAILED.
A prefix CS means COMMAND SUCCEEDED.

A prefix D means SOMETHING HAS DETECTED OR DONE. /

#define INITIALIZE 0 /* Start with aplomb. /

#define CSHEEP 1 /* SSDR was commanded to enter SHEEP mode. */
#define CSSHEEP 2 /* SSDR accepted a SHEEP command. */
#define CFSNEEP 3 /* SSDR wouldn't accept a SHEEP command. /
#define OSNEEP 4 /* The sweep was completed successfully. */
#defins DAPUON 5 /* The auxiliary power unit was detected ON. /

#define CSCROLL 6 /* SSR was commanded to enter SCROLL mode. /

#define CSSCROLL 7 /* SSDR accepted a SHEEP command. */
#define CFSCROLL 8 /* SSR wouldn't accept a SCROLL command. 0/
#define DLAUNCH 9 /* A launch was detected. */

#define CLAUNCH 10 /* SSOR was commanded to enter LAUNCH mode. 0/

#define CSLAUNCH 11 /* SSDR accepted a LAUNCH command. */
#define CFLAUNCH 12 /* SSDR wouldn't accept a LAUNCH command. /

define DPRESSURE 13 / The pressure switch detected a pressure drop.*/
#define DNOOPCOMP 14 /* SSDR didn't report completion in the

allotted time. /

define DOPCOMP 15 / SSOR completed its SHEEP or LAUNCH mode. /

ldefine DABORT 16 /* He think the mission was aborted. /

define CONSSOR 17 / The SSDR power on ommnd was issued. /

define CSONSSDR 18 / The SSDR power on ommend succeeded. /

def ins CFONSSCR 19 / The SSDR power on commend failed. /
Odef ins COFFSSOR 20 /0 The SSOR power off commnd wa issued. /

define CSOFFSSDR 21 / The SSOR power off ommnd succeeded. 0/
#dmfine CFOFFSSOR 22 /* The SS)R power off command failed. */
def ins COFFVCO 23 / The VCO power off commend was issued. /

define CSOFFVCO 24 / The VCO power off commnd succeeded. 0/

defins CFOFFVCO 2S / The VC0 power off commend failed. /

def ins CONYCO 26 /* The VCO power on -mnd wes issued. M/
def ine CSONVCO 27 / The VCO power on mmend succeded. /

#define CFONVCO 28 /* The VCO power on command failed. /

#def ins COFFAD 29 /* The AD power off command was issued. 0/
ldef ins CSOFFAD 30 /* The AD power off commenid succeeded. /

155

#define CFOFFAD 31 /* The AD power off command failed. W/
#define CONAD 32 /* The AD power on command was issued. u/
#define CSONAD 33 /* The AD power on command succeeded. */
#define CFONAD 34 /* The AD power on command failed. */
#def ine COFFMATF 35 /* The MATF power off command was issued. */
#define CSOFFtATF 36 /* The MATF power off command succeeded. W/
define CFOFFHATF 37 / The IATF power off command failed. */
#define CONHATF 38 /* The MATF power on command was issued. 5/

#define CSONMATF 39 /* The HATF power on command succeeded. 0/

Odefine CFONMATF 40 /* The MATF power on command failed. */
#define COFFHEAT 41 /* The HEAT power off command was issued. 0/

#define CSOFFHEAT 42 /* The HEAT power off command succeeded. 0/

#define CFOFFHEAT 43 /* The HEAT power off command failed. */
#define CONHEAT 44 /* The HEAT power on command was issued. */
#define CSONHEAT 45 /* The HEAT power on command succeeded. 0/
#define CFONHEAT '6 /* The HEAT power on command failed. 0/

#define READAD 47 /* He read the A/D's. /

#define TERMINATE 48 /* Finish gracefully. */
#define DUSERNOAPU 49 /* The user terminated the wait for the APUs. 5/

#define INVALIDCOttAND 50 /* Th.s code is regarded as invalid, and should
never occur. It is provided to help in
debugging the software. 0/

#define PRIORLAUNCH 51 /* If power is restored after the launch has already
begun, then this mission status is assigned. 0/

#define CSRECORD 52 /* The RECORD mode command succeeded. 0/

#define CFRECORD 53 /* The RECORD mode command failed. */

/* Various constants used for setting the parametric registers. 5/

#define BBLKLNM OxlO /* Block length register MSB. 64 bytes/page. 5/

#define BBLKLNL OxOl /* Block length register LSB. 1 page/transfer. */
#define BMBMSEL OxOO /* Bubble memory select (MBM). Only 1 module

connected. */
#define BENREG Ox2O /* Enable register. Polling mode. W/

#define THOUSANDTHS Ox6O /* The ports for reading the date and time. 0/

#define HUNDREDTHS Ox61
#def ine SECONDS Ox6Z
#define MINUTES 0x63
#define HOURS Ox64
#define HEEKDAY Ox6S
$def ine DATE 0x66

#def ine MONTH 0x67

struct datetime C /* This structure contains binary coded w/
char month; /* decimal data as defined for the National c/
char date; /* Semiconductor MM158167A Microprocessor s/
char hour; /* Real Time Clock. 5/

char minutes
char second;
char handredths$
char thousandths

struct idatetime { /* This structure contains the same 5/

int imonth) /* information as the datetime structure, but*/

int idate /* in integer format. clockint(takes care */

156

int ihour; /* of converting from BCD to integer format. s/
int iminutei
int isecond;
int ihundredths;
int ithousandthss

/* This structure describes the uses of the bits in the power relay control
port. */

struot powerportfmt C
char :2; /* Upper two bits are not used. 5/

char heater:1; /* Sit S - designates the heater circuit. 5/

char matchedfilter:l; /* Bit 4 - designates the matched filter. 5/

char atod:l; /* Bit 3 - designates the A/D circuit. /

char vco:l; /* Bit 2 - designates the VCO. /

char ssdr:l; /* Bit 1 - designates the SSDR. 5/

char relayson:l; /* Bit 0 - 1 to turn relays on,
0 otherwise. 5/

/* This structure describes data stored in page zero of the controller's
bubble memory. */

struct pageOdata C /* A template for data in page zero of the
controller's bubble memory. /

char sweepstarteds /* FALSE if sweep not yet begun.

TRUE if sweep has been started once. /

char launchdone; /* FALSE if laurch has not yet P n detected.
TRUE if laLch has been .atected. 5/

int page; /* Number of next page available for
log data.*/

char halfpage; /* 0 if top half of next available page is
empty, 1 otherwise. /

char fullexperiment; /* TRUE if the full experiment is to be performed,
FALSE otherwise. /

/* He need to record the date and time when RECORD
mode was last initiated if we are not performing
the full experiment. /

struct detetime RECORD-start-time)

/* This structure describes data stored in every block of a page in
the controller's
bubble memory, with the exception of page zero. 5/

struct logdata (/* A template for logged data. 5/

struct datetime clock; /* Tim and date of recorded date. 5/

char event; /* A coded event. See *define section for
codes. */

char atod[ADPOINTS]; /* Coded A/D readings. Codes not yet defined. /
)

/* This structure has BLOCKSPERPAGE log._data structures in it. /

struct full-loa-page C
struct log-data half-page[BLOCKS_PERPAGE];

157

enum pwr_cmdmodifiors (/* These codes can be given to cmdlog() for 5/

issued a 0, /* processing. They show whether a power relay 5/

succeeded r It /* command was merely issued, or succeeded or 5/

failed : 2 /* failed. 5/
2;

E. FILENAME BUBBLE.H

/* This file contains global prototype declarations for the functions in

"bubble.". */

extern void bpagesettint page))
extern void b.cmdmemnu(void);
exter char bubinit(void);
extern char bubiolchar command,int pagechar *buffer);
extern void bubmenu(void))

extern char bub_on(void);

extern void buboff(void);
extern char issububcmd(char command);

extern void rdstatreg(void))
extern void showbubbuffichar buffer],char mode);
extern void testpatterr(char buffer!])

F. FILENAME BUBBLE.C

/* bubble.c /

#include "bubrw.h"
#include "vibro.h"
#include "convert.h"
#include "expmnt.h"
#include "inout .h"
#include "delay.h"
#include "newio.h"
#include "global .h"

void bpageset int page);
void bubcmdmenu(void);
char bubinitivoid)l
char bubio(char commnd,int pagetcher *buffer);
void buemivold)s
char bub_onvoid); /* turn on power to the bubble card 5/

void bub-offivoid)i /* turn off the power to the bubble card 5/

char issui.bcmd(cher ommnd))
void rdstatreg(void)l
void shoo 4bbufflchar buffer! Ipohar mode)i /5 display the bubble buffer. 5/

void tostpettern(cher buffer[3); /* sets whole bubble
buffer to character of users ohoioes/

--- -- -- --- - - -- - - -- - - -- - - -- - - -
/* See the bubblo memory manual regarding the setting of the parametric

158

registers, which is what this function does. w/
void bpageset(int page)
t

output(BUBCTRLBLDPARM)i /* signal to SC next 5 bytes to data port
are for parametric registers 5/

outputEBUOATA,OxCl); /* one page to transfer BLRLSB 5/

output1BUBDATAOxlO); /* one FSA chaniel BLRMS8 */
outputlBUSOATAOxZO); /* Enable register-enable read corrected data 5/

/* Mask off lower byte of page number. 5/

outputl BUBDATA page I OxOOff)s
/5 Mask off higher byte of page number, with a zero MIBM. 5/

outputIBUlBDATA,(page >> 8) & OxO0lf);

/* Select from a menu, and issue, a command to the bubble memory. s/
void bubcmdmenu(void)
f

char data;
static int command(] = C

BABORT, BLDPARM, BINIT, BFIFORESET,

NULL, BNRBLREG
31

while (TRUE)(

printf("Select a command to be issued to the bubble memory: nr

A Abort B Load parametric registers C Initialize D FIFO Reset n r
E Transfer 40 bytes of Oxff. F Write bootloop register nr
Z Return to previous menu. n r");

data = tolower(terminI));
printf("c n r",data);

if (data == 'z') return;

/* Issue bubble transfer command.5/

if (data == 'a') (

if (bubxfer f)
printf("Transfer succeeded. n r")

else
printf("Transfer failed. n r" ;

continue;
)

/* Initialize parametric registers for page zero *1
if (data z) C

bpageset(O);
continue;

)

/* Check for other valid responses 5/

if (data < 'a' 11 data > 'f') (

printfI "Use a valid letter please, n r"
continue;

)

/* Issue the command indexed by the letter 5/

if l issububcmd(command[data-'a' I)

printf("Command succeeded. n r"

159

else
printfl"Command failed. n r");

/* This routine initializes the controller card's bubble memory.

Return FALSE if unsuccessful; TRUE otherwise.
After power is applied to the bubble memory, call this routine.
It implements the flow chart on pp. 4.9-4.9b in BPK 5V75A Protyping Kit

User's Haual from Intel. */
char bubinitivoid)
C

/* Clear the bubble memory registers, w/

if (!issububcmd(BABORT)) (
printfi "ABORT command failed. n r");
returni FALSE);

3

delay(BUBDELAY)) /* Delay BUBDELAY * 10 ms *1
bpageset)0)) /* Load the parametric registers of

the bubble memory. */
if I!issububcmd(BINIT)) C /* Initialize bubble memory for use. */

printf("INITIALIZE conmand failed. n r")
returnl FALSE) i

3

if I!issububcmid(BFIFORESET)) C /* Reset FIFO buffer. */

printf("FIFO RESET command failed in bubinit(I. n r")8

return! FALSE))
)

if ,!bubxfar))C /* Write 40 Oxff characters to the

bubble memory controller. */
printf"40 byte transfer failed. Status: .);
rdstatreg);
return FALSE);

}

if)!issububcmdlBHRBLREG)) /* Put boot loop memory map into BMC. C

return FALSE I)
returnITRUE); /* If you got this far, everything

worked. */

/* Perform normal input from or output to the bubble memory

controller. */
char bubio(char command,int page,char *buffer)

/* "co mnand" can be BREAD to reads BRITE to write. "/
/* "page" is a bubble memory page number, from 0 to 8192. C/

/* "buffer" is a pointer to a buffer of length PAGELENGTH. C/
C

nt ji /* Counters. 0/

/* Do not operate the bubble memory if the temperature is below

MINOPERATING-TEMP. */

if)colder_thani MINOPERATINGTEMP))

return) FALSE);

160

bub on())
if Tbubinito)) C

return FALSE);
I

bpageset(page); /* Set parametric registers for the desired page. */

if (command == BREAD) C

bubread(buffer);

else if (command == BNRITE) C

bubwrite(buffer);

/* lait for the SC to finish emptying the FIFO buffer and return

OPCOMPLETE. */

for (j=O;j<BTRIES;*+j) C
if (input(BUBCTRL) & BOPCOPLETE)

breaki
)

if (j >= BTRIES) C
bub_offI);

printfi"Couldn't get an OPCOMPLETE from BMC. Status: ");
rdstatregf);

return(FALSE);
I

buboffi);
/* printf("OPCOMPLETE received from BMC. n r"i; J/

return(TRUE)) /* If you got this far, the I/0 worked! /

)

void bubmenu(void)

char data;

static char success(] :

"Bubble was successfully initialized in bubmemu3. nr"

)I
static char failure[I C C

"Bubble couldn't be initialized in bubmenuf). n r"

)s
while (TRUE) C

printf(

"A Turn bubble memory power on. n r.

B Turn bubble memory power off. n r
,

C Initialize bubble memory for use (fully automatic)n r,

Be sure to turn the bubble memory power on, first.,nr
,

D Issue one of a menu of coqmands to the bubble memory.,n.r\

E Enter data from keyboard into buffer. nr

F Show buffer contents in ASCII format. n r\

G Show buffer contents in hexadecimal format. n r\

N4 Copy buffer contents to bubble memory (write bubble memory). n r

I Copy contents of bubble memory to buffer (read bubble memory). ,n r
J Display contents of bubble memory status register. n r,

Z Return to previous menu. nr")i

data 2 tolower(termini));

printf ".c n r",data);

switch! data (

161

case a':
ub onh)

break I
case 'b':

bub_of f(

break)
case 'c':

if Ibubinit(})
printf(success)s

else
printfi failure);

break;
case d':

bubcmcmanuo;
break;

case 'e':
testpatterni tempbuffer),
break)

case 'f:

showbubbuff(tempbuffer,ASCII))
break;

case 'g':

showbjbbuff(tempbuffer,HEX);
break)

case ':

if (!bubioIBHRITEpgetpageno(),tempbuffer)J
printf("Hrite Failed. nr");

break;
case 'il:

if I !bubio(BREAD,getpageno(),tempbufferl)
printf("Read Failed. n.");

break;
case 'j':

rdstatreg(}J

break)

case 'z': case 'Z:

return;

default:

printff"Use a valid letter, please. nr"))
)

char bb_on(void) /* turn on power to the buble card 5/

output(CLRCZ,BBRST 1 /* Apply a reset to the bubble memory.*1

outputI$SETC2 ,BUPNR)I /* Apply power to the bubKble memory.*/
/* The following delays could be 100 us (according to the bubble

documentation) but did not work, so we used 300 me. */
delaylBUBOELAY); /* Malt BUODELAY * 10 as for a response. /

output(9SETCZ,BUBRST)) /* Remove reset signal. 0/
delaylBUBOELAY)i /* Hait BUBDELAY * 10 ms for a response. 5/

162

void bub off(void) /* turn off the power to the bubble card at
(

issububcmdBABORT); /* Issue the "abort" command to the bubble card. at
outputBCLRCZ,BBRST)j /* Apply a reset signal to the bubble memory

before switching the power off. */
delay(BBDELAY); /* Wait BUBDELAY * 10 ms for a response. e/
output(BCLRC2,BUBPWR); /C Remove power from the bubble memory. CI

/I Issue a command to the bubble memory controller. a,
char issububcmd(char command)
(

int it
char status;
i=O) /* Initialize this so it has a value even if BABORT

is the command. */
/C Don't issue a command until the BUSY bit goes away. a,
if (command != BABORT) (

for (i=O;i < BTRIES;++i)

if ((input(BUBCTRL)) & BBUSY)
break;

)
)

if (i > BTRIES) C
printf("Bubble controller stayed busy indefinitely in issububcmd().

Status: ");

rdstatreg);

return FALSE);
)

output(BUBCTRL ,command)s
/* Command is not accepted until busy bit goes to one. a/

for (i = O;i < BTRIES;++i)(

status = input(BUBCTRL);
if ((status & BBUSY) II (status & BOPCOMPLETE))

break)

/C For all commands except RESET FIFO and WRITE BOOTLOOP REGISTERS,
you must get a BUSY bit to consider that the command was accepted.
However, an OPCOMPLETE is okay; if you get it, proceed. Note:
this is not the way the documentation says to do this. It says
you must get BUSY set first. However, that didn't seem to work. Ct

if (Ii >= BTRIES)

S& (command ! BFIFORESET) c (command !z BWRBLREG)
S& I status & BOPCOMPLETE)) C

printf("Bubble command .sh was not accepted. Status: ",

ctch(command)) ;
rdstatreg();

return(FALSE);
)
/I Wait for the OPCOMPLETE status code. at

for (i a Oi BTRESi+i)(
if (irput(BIBCTRL) & BOPCO"PLETE)

break;
)

if 1i >a BTRIES)

163

printf("OPCOPLETE from SHC never occurred for comand Xsh. Status: ,

etoh(command))

rdstatregl s)
return(FALSE);

else C
returni TRUE);

3

void rdstatregivoid)
C

printf I "Xs n r" ,ctoh(input (BUCTRL))))
)

void showbbbuffchar buffer[],char mode) /* display the bubble buffer.

ASCII format tries to print each character as if it were a

printable ASCII character.

HEX format is the correct option to use if not all characters are
printable. */

/* Valid values for "mode" are ASCII and HEX 5/

C

int js /* Dump contents in an 8 by 8 array. 5/

for (j:O;j<PAGELENGTH~j +) C

if (mode == ASCII)

printf("Xc" ,buffert j 1);

else C
printf("/s ",ctohlbuffer[j])))

if (0 :: (j + 13 X 8) && (j != 0))
printf(" n r") I

3
3
print!(" n r"),

void testpatternlchar buffer[D)

/* sets whole bubble buffer to character of users choice*/
C

char €;

char sCSTRLEN]) /* Storage for itoeo). 5/

nt j)

/* tiake sure c has a value before checking its contents.*/

c a* '0's
printf("Specify up to Xs characters to stuff into the bubble. n~r",

itoe PAGELENGTH,s 3),

for 1Jx00jPAGELENGT10j#+) C

if (c I r) (

c U terminl ;

if (c !a 1r') '

buffert[al

printf("Xc" ,c)

else

bufferJ] Is

164

I else
buffertj] =

printf(" nr")

G. FILENAME BUBRW.H

extern char bubxfer!void)l
extern char bubread(char *buffer)$

extern char bubritelchar *buffer)$

H. FILENANIE BUBRW.S

; bubrw.s

#define TRUE Oxff

#def ine FALSE OxO0

I The definitions which follow are from the file "vibrocontrlr headers bmc.h".

Since they are used by C source code, they are incompatible with assembly

code. Thus they are copied here and all C comments have been converted

to assembly language comments.

#define BUBDATA Ox40 ; I/O port for the controller's bubble memory. */

#define BUBCTRL Ox4l ; Control and status port for the BMC. */

) The following codes are commands to the bubble memory controller. */

#define BABORT 0x19
#define BINIT Oxll

#def ine BFIFORESET OxlD

#define BHRBLREG Ox16 Hrite boot loop register. */
#;define BREAD Ox12

#def ine BNRITE Ox13

#define BLDPARI OxOb Load parametric registers. */

#define BTRIES 30000 Bubble commands should be written this */
many times before giving up in disgust. C/

The following are bubble memory controller status codes. N/

*def ine B8USY Ox80
idef ine BOPCOMPLETE Ox4O
Idef ine BFAIL OxZO
Idef in. BTIMNG Ox02
*def ine BFIFO Ox01

*define SBUSYBIT 7) These constants specify which bit in the C,

ldeffin@ BOPCOPIPLETEBZT 6 ; 814 status bit is used for which purpose. */

*def in. SFAILBIT s

ldef in. BFIFOSIT 0

*defin. BNEVERREADY 0
#def ine BXFERGOOD 1
*define BXFERBAO 2

#define PAGELENGTH 64 The nuiber of bytes in a page of bubble memory. e/

#define MAXPAGE 8191 1 Greatest valid bubble memory page number. */

165

)Implement in assembly code a C routine to permit a very rapid transfer

)of forty bytes of Oxff to the bubble memory controller during its
; initialization.

;char bubxfer(void)
'C

export bubxfer

region code

bubxfer:
push ix

Id ixO) ix <-- sp

add ixsp

;Issue a FIFO RESET command

Id aoBFZFORESET) FIFO RESET command code.

out I$BUBCTRL),a

Id de,Oxffff ; Initialize a timeout counter.

fiforsbusy: i See if the command was accepted.
in a,(SBUBCTRL)

rla s Move busy bit into carry flag.

jp c,fiforstaccepted I The busy bit is a 1 if the command

Swas accepted.

dec de

xor a s Clear register a.

or d ; See if de is 0.
or a

ip nz,fifors busy s Check for busy bit again, since timeout

not yet complete.

ld a,$FALSE ; Timed out without succeeding, so

jp bxferexit ; return with a FALSE condition code.

f ifors t-accep ted:
ld b,40 ; He need to transfer 40 bytes of Oxff

ld aOxff

xfer: out I$BUBDATA),a

djnz xfer

in a, !$BUBCTRL)

s The transfer succeeded if you got an Op Complete code

; with the FIFO bit set, even with the timing bit Ibit 1) set.

and $BTIMING ; Zeroize the timing bit.

cp $BOPCOMPLETE I *BFIFO I Do we have operation complete?

ip zxfer.ok s Yes.

ld a,tFALSE) Unsuccessful transfer.

jp bxfer-exit

xfer_ok:

ld a,$TRUE i Successful transfer.

bxfer-exit:

pop ix

ret

)Implement in assembly code a C routine to permit very rapid input of

as page of data from the bubble memory.

;char bubreadf char *buffer)

export bubread

import issububcmd

166

region code
bubread:

#comment

Register usage:

a Scratch space.

bc Constant I for subtractions.

do Constant PAGELENGTH.

hl Constant STRIES

bc' char *buffer.
#endcomment

push ix

ld ixO ; ix <-- sp

add ixsp
exx Access alternate registers.

push bc i Save bc'
ld c,(ix+4) bc' -- char *buffer

ld b,(ix+S)

exx ; Return to primary registers.

ld hl,$BFIFORESET Issue the FIFO Reset command to the BMC.

push hl

call issububcmd

pop hi

cp $FALSE ;Quit if this commad didn't work.

ip nz,frok

ld a,SBXFERBAD

ip exit

frok:

Id a,$BREAD i Issue the READ command to the BHC.
out I$BUBCTRL),a

ld hl,$BTRIES-1 s Look for BUSY bit up to BTRIES times.

ld bc,l ; Used for subsequent decrements.

read-status:

in aL$BUBCTRL) Get status from BMC.

bit SBBUSYBIT,a sHas the command accepted?

jr nzread ; Yes, so read a block of data.

bit $BOPCOMPLETEBIT,a Not busy. Has operation complete?
jr nz,read ; Yes, so read a block of data.

bit $BFAILBIT,a ; Not busy, not done. Failed?

jr nz,timeoutl ; Didn't fail. Don't know why. Allow a

timeout.

ld a,$BNEVERREADY i Did fail, so quit. Return function

ip exit ; completion code in register a.

timeoutl:
or a s Reset the CARRY flag.
sbc hl,bc i Have we looked for a BUSY signal STRIES

; times yet?

jr nc,readstatus ; No, so try again.

Id a,$BNEVERREADY) Yes, so we timed out. Quit and return
; function completion code in register a.

jp exit

read:

Id deSPAGELENGTH-1 Prepare to read PAGELENGTH bytes from MC.

read-byte:
Id hItBTRIES-1 i Prepare to check FIFO bit BTRIES times.

checK.fifo:

in a,($BUBCTRL) i Get status byte from BMC.

bit $BFIFO8ITa Is the FIFO bit set, i.e. FIFO ready?

167

jr nzgetbyte i Yes, so read a byte.
or a) Reset the CARRY flag.
sbc hlbc ; No, so try again up to BTRIES times.
jr nc,checkfifo

ld a,$BXFERBAD ; Never got a FIFO ready, so quit.
ip exit

getbyte:

in as(BUDATA) I Read a byte frow the MC.
exx
ld (bc),-a Place the byte in the buffer.
inc bI i Point to the next position in the buffer.
oxx

or a Reset the CARRY flag.
ex de,hl Put contents of d in hl to permit use of sbc.
sbc hl,be Have we read all the bytes yet?
ex de,hl Restore usual contents to de and hi.
jr nc,read_byte No, so get another one.
ld a,$BXFER-GOOD Yes, so quit. Return function completion

I code in register a.
exit:

exx
pop bc s Restore alternate registers.

exx
pop ix) Restore ix register.

ret

)

;Implement in assembly code a C routine to permit very rapid output of
ja page of data to the bubble memory.
;char bubwritetchar *buffer)

export bubwrite
import issububcmd
region code

bubwrite:
#comment

Register usage:

a Scratch space.
bc Constant 1 for subtractions.

de Constant PAGELENGTH.
hi Constant STRIES

bo' char *buffer.

4endcomment
push ix

Id ix,O ix <-- sp
add ixsp

exx Access alternate registers.

push be Save be'
Id c,(ix+4) i be' <-- char *buffer
Id b,Iix+S)
exx I Return to primary registers.
Id hl,*BFFORESET i Issue the FIFO Reset command to the 9MC.
push hl
call issububcmd
pop hi
cp $FALSE sQuit if this command didn't work.

168

jp nz,frok2

ld aSBXFERBAD

jp exitZ
frok2:

ld e,$SHRITE ; Issue the WRITE command to the MC.
out ($BUBCTRL) pa
ld hl,$BTRIES-1 s Look for BUSY bit up to STRIES times.
Id bco, 1 Used for subsequent decrements.

write-status:

in &,I$BUBCTRL) I Get status from BMC.

bit $BBUSYBZT, a Has the command accepted?
jr nz,write s Yes, so write a block of data.
bit SBOPCOMPLETEBITa Not busy. Has operation complete?

jr nz,write Yes, so write a block of data.

bit $BFAILBIT, s Not busy, not done. Failed?

jr nztimeoutz Didn't fail. Don't know why. Allow a
timeout.

Id a,$BNEVERREADY Did fail, so quit. Return function

jp exit2 completion code in register a.

timeoutz:

or a Reset the CARRY flag.

sbc hl,bc ; Have we looked for a BUSY signal BTRIES

I times yet?
jr nc,write-status i No, so try again.
ld a,$BNEVERREADY) Yes, so we timed out. Quit and return

; function completion code in register a.

jp exitz
write:

ld de,$PAGELENGTH-1) Prepare to write PAGELENGTH bytes to BMC.

wr itebyte:

ld hl,$BTRIES-I i Prepare to check FIFO bit BTRIES times.

check-fifoZ:

in a,I$BUBCTRL) Get status byte from BMC.

bit SBFIFOSIT,a i Is the FIFO bit set, i.e. FIFO ready?

jr nz,putbyte Yes, so read a byte.

or a Reset the CARRY flag.

sbc hl,bc i No, so try again up to BTRIES times.
jr nc,checkffifoZ

ld a,$BXFER-BAD i Never got a FIFO ready, so quit.

jp exit
putbyte:

exx
ld ap(bc) ; Get the byte from the buffer.
out ($SUBOATAIa ; Write a byte to the BMC.

ino b; Point to the next position in the buffer.

ex(

or a Reset the CARRY flag.

ox de,hl Put de into hl to permit use of *be.
sc hl,bc Have we read all the bytes yet?
*x de,hl Restore usuel contents to de and hi
jr nc,writebyte No, so get another one.
ld *,$BXFERGOO0 Yes, so quit. Return function completion

code in register a.

exit2:

exx
pop bc s Restore alternate registers.

exx

169

POP ix iRestore ix register.
ret

IFILENAME CLOCKH

Is This file contains external prototyping declarations of all functions used
in "clock.c". */

extern void clockint~struct datetime *clockpstruct idatetime *iclock);
extern void clockread(struct datetime *your-.clock))
extern char clocIkcompare(struct idatetime *clockl,st-uct idatetime *clockZ);
extern void clockset(struct datetime *clock)
extern void clock'sun(struct idatetime *result,

struct idatat ime *elockl,
struct idatetime aclock2)s

extern void du.zmp.clock(struct datetime *clock);
extern void rtc(voidh
extern void show~waketime(struct idatatime *waketime);
extern void testtimeout(void);

extern char timeout~int delaytimetint moasure)

J. FILENAME CLOCKC

Is clock.c */

#include "vibro 1V*
#include "convert .h"
#include "inout .h"
#include "newio.h"
#include "global .h"

void clockintistruct datetime *clock,struct idatetime *iclock);
void clocKread(siruct datetime *your-clock);
char clockcomwparalstruct idatetime *clockl,struct idatetime *clock.I;
void clockset(struct datetime *clock);
void clocksuma(struct idatetime *result,

struct idatetime *clockl,
struck idatetime *clockZ);

void dump-clockt struct datetinme *clock);
void duaa-iclockE struct idatetime Wlock Ii
void get..timeE struct datetime *dmte.and..t im
void rtc(void);
void show-waketime(struct idatetime swaketime ii
char *strcpylchar *ell char *s2)1
void tiesttimeout~void)i
char timeout(int delaytimevint measure);

static char P monthst I a (
"-e Invalid month *' ,January" ,'"February" , "March" ,"Apr i I "May" ,"Junoe",
"July" "August", "Septeumber" "'October", "November"# "December"

170

/* Convert a datetime structure to an idatetime equivalent. This allows
arithmetic to be performed on dates and times. */

void clockintfstruct datetime *clock,struct idatetime *iclc)

iclock-imonth z bcd-int(clock-inonth)i
iclock->idate =bcd..int(clock->date)j
iclock->ihour z bcd-int(clock-hour);
iclock->iminute =bcd-inticlock->minute)i
iclock-isecond = bcd..int(clock->second)
iclock->ihundredths =bcd-.int(clock->hunadradths ii
iclock->i thousandths z bcd-intl clock->thousandths)

/* This routine fills a clock(structure with the current date and time. ~
/* It will not worry about the hunadredths and thousandths, but it will attempt

to ensure that at least the seconds have not changed between the first
and the last reads of the various clock registers. Thus the hundredths
and thousandths should not be regarded as accurate, ever. *

void clockread~struct datetime *your-clock)

int ii

do C
your-clock->thousandths =input) THOUSANDTHS)i
your..clock->hundredths =input) HUNDREDTHS)
your-clocK->second =input(SECONDS)i
your_clock->minute = input(MINU7ESJ$

your..clock->hour =input) HOURS;

your-clock-date =input(DATE)s
your~clock->month =input)MONTH);

)while (your..clock->second != input(SECONDS) &A ++i <= 10 CTRIES)i

1* Compare two clock times. Return TRUE if the first is later than or
equal to the second, FALSE otherwise. This routine ignores the
hundredths and thousandths, since they are inaccurate. */

char clockcompare(struct idatetime *clockl,struct idatetime *clock2)

int difference;

difference = clockl->imonth - clock2->imonth;
/* This logic allows you to decide January comes after Decembier. *
if ((differencme + 12) X 12 < 6

A& difference != 0) return(TRUE)l
if (difference != 0) raturn(FALSE);

if (clockl->idate < clocI'2->idate) raturniFALSE);

if (clockl-idate > clook2->idate) return(TRUE);
if (clockl-ihour < cloc)k2->ihour) returni FALSE)s
if (clockl->ihour > cloc-kZ->ihour) return) TRUE))
if (clockl->iminute < clock2-iminutel raturn(FALSE~w
if (clockl->iminute >clock2->iminute) return(TRUE D

171

if (clockl-isecond <clockZ->isecond) raturn(FALSE)s

return(TRUE);

-- - - - -

/* This routine sets the real time clock. e
void clockset(st-uct datetinte *clock)

get..time(clock);
output(MONTH ,clock-month))

output (DATE ,clock->date Jj
output) HOURS,clock-'hour)l
output) MIIATES,clock->minute 31
output(SECONDSclock->second);

/* Find the sum of two calendar periods. *

void clocksumistruct idatetime *result,

struct idatetime *clockl,
struct idatetime *clock2)

int maxdate; /* The last valid date in the month. *

result-isecond =elockl-isecond + clock2-jsecond;
result-iminute =result->isecond / 60;
result-isecond Z= 60;

result-iminute *= clockl-iminute + clock2-iminute;
result-ihour =result->imjnut, / 60;

result-iminute Y= 601
result->ihour += clockl-ihour + clockZ-ihour;

result->idate =result-ihour / 24;
result-ihour X= 241

result-idate += clockl->idate + clockZ-idatei
result->imonth =1 + (clockl->imorith * clockZ-imonth - 21 Y 12;
maxdate =((result-imonth ==4) 11 (result-jmonth ==6)

11 (result->imonth z=9) 11 (result-imonth ==11)) ? 30 :31;
/* The real time clock makes no provision for leap year, so leap years

are ignored in this program (sigh!) */
maxdate = (result-imonth ==2) ? 28 maxdatei
result-imonth *: (result->idate -1) /maxdate;
result-idate =1+ (result->idate -1) X maxdate)
result-imonth z I (result-imonth - 1) X 12;

/* Print a clock structure. C

void dwip..clocKstruct clatime *clock)

int hour, minute, second, date, month;

hour a bcd.intlclock-*hour);
minute = bcd-intclock->minute)s

second z bcdjintl clock->second J;
date =bcdjint(cocK->dateI;
month z bcd-int~clock->monthls

172

printf("X02.2d:702.2d:X02.2d Ys Xedn,r"P
hour ,mjnute ,second,
months[month > 12 ? 0 :month It

date

/* Print an iclock structure. *
void chmp-iolock(struct idatetime *clock)3

printff"7OZ.2d:X02.2d:YO2.Zd Ys Ydn'r",
clock->ihour,clock->iminute,clock->iecond,
months[clock-imanth > 12 ? 0 :clock->imonth It
clock->idate

void get-time(struct datetime *date_and~time)

int month, date, hour, minute, second, maxdatej
static char crt] = nr")

while (TRUE) (

printfi(Month? (1-12) ")1
month =getint(1

if (month >= I S& month <= 12)
break;

printf(lInvalid month. Re-enter it. n r"))

printf(cr3;
maxdate =(month 4 11month =x 6 11 month == 9 month :31)?

30 :31;
maxdate (month 23 ? 28 :maxdate;

while (TRUE) C
printf(Day? (1-;ad) ",maxdate);

date =getint(3

if (date -~ 1 && date <= maxdate)
break;

printf(" n rlnvalid date. Re-enter it..n r")s

printf(cr 3;
while ITRUE)

Printf(tHour? (0-23) ")s
hour z getint();
if (hour >= 0 && hour <a 23)

break;

printf("Invalid hour. Re-enter it.,n r");

printficr)i

while (TRUE)

printf("Minute? (0-59) 3

minute z get int(3;

if (minute >z 0 &S minute <x 59)

* break)

173

printf("Invalid minute. Re-enter it. nr"');
3

printf(cr)$
while (TRUE) C

printf("Second? 10-59) ")1
second x getint! 1;
if (second >= 0 9& second <z 59)

break)
printfil"Invalid second. Re-enter it.lnr");

3

printf(cr);

dmt._and_time->month = int bcd(month)$
date-nd-time->date = int-bcd(date)s
dateand time->hour a int.bcd(hour)s
dateand_time->minute a intbcd(minute);
dateand_time->second = intbcd(second);

/* This routine is a menu-driven collection of routines for testing the

clock functions. */

void rtc(void)
{

char data;

while (TRUE) (
printf(

n rReal time clock functions. n r n r
A Read Clock. n r

B Set clock. n r

C Test timeout() function. n r
Z Return to main menu. n r")s

data = tolower(termin()s

printf("c n r",data)s

switch (data) C
case 'a':

clockread(&clock);
dumpclock(&clock);
break;

case b:
clockset(block);
break)

case lc':
testtimeout(1;
break;

case 'Z°:

return)
default:

printf("Use a valid letter please.n\r"))
break;

174

/* This routine displays the wake-up time. */
void show_aktimelstruct idetetime *waketime)
C

char $(STRLEN]s /* String for itoal) routine. /

ito(elw*mketime->imonth, 3);
printf("Nake-p time is: nr onth X Is);
itoa(waketime->idate,s)
printf("Oate z 7s ",s);
itoawaketime->ihour,s)s
printfl"Hour = Xs ",s)$
itoa(waketime->iminuteps)s

printfi"Minute 2 Xs "Ps)s
itoa(waketime->isecond,s);

printf("Second = Xsnr",s);

/* This routine is used to test the timeouto 3 function. C/

void testtimeout(void)
C

char data, /* A character entered from the keyboard. */
units; /* The units of delay. */

ant delay; /* The number of units of delay. */

while (TRUE) (

printf("Test of timeout() function. n r n r
Specify time units for delay: n r n r
A Hours n r
B Minutes n r

C Seconds n r
Z Return to previous menu., n r");

data = toloweri termini);

printf('Xc n r",data 1;
switch (data) C

case 'a':
units = HOURSs
breaks

case b:
units a MINUTESs

breaks
case c,:

units a SECONDS;
break;

case 'z':
return;

break;

default:
printfl"Use a valid letter pleese.,nmr")
breaks

)

printfl n rHow many units of delay do you want? n r");
delay 2 getint(1;
printf n rStarting delay: n r");

175

clockread(&clock)3

dump_clock(&clock)s
timeout(delay,units)

while(?timeout(NULLMJLL)1

printf(I'Delay complete. n r");

printf(".c€" ,BELL)3

clockread(Aclock)s

dumpclock(&clock);

/* This routine is used to initiate a timeout sequence, and to test for

completion. To set the desired delay time, the parameter "delay"

should be non-zero. To test for completion, "delay" should be zero (NULL).

When setting the delay time, the function always returns TRUE. Hhen

testing for completion, it returns TRUE if the time has elapsed, FALSE

otherwise. */

char timeout(int delaytime,int measure)

/* "delaytime" is the length of the timeout. */

/* "measure" is the unit of measure of time. This can be

MONTH, DATE, HOURS, MINUTES, or SECONDS. */
C

static struct datetime timenows

static struct idatetime itimenow, waittimes

/* Allow the user to interrupt by use of CTRL characters. s/
allow_ctrl_interrupts(;

clockread &timenow);

clockint(&timenow,&itimenow)

if (delaytime == NULL) C /* If delaytime == NULL, then check to

see if timeout period is over. a/

return(clockcompare(&itimenow,&waketime) 3;

3 else (/* Otherwise, set the wakeup time. /

waittime.imonth a waittime.idate = waittime.ihour

= waittime.iminute = waittime.isecond = 0;

switchtmeasure) C

case MONTH:

waittime.imonth = delaytime;

break

case DATE:

aittime.idate x delaytimes

breaks

case HOURS:

waittime.ihour a delaytimes

break;

case MINUTES:

waittime.iminute a delaytime;

breaks

case SECONDS:
waittime.isecond a delaytime;

breaks

3
clocksum, waketime,aitimenow,&aittime);

show-waketime(1waketime)s

176

return(TRUE)s

)

K. FILENAME CONVERT.H

/* This file contains external prototyping declarations for all functions

in "convert.a".

extern char atoh(char *ascii)i

extern unsigned ant atohexinttchar ascii[1);
extern int atoilchar *s);

extern char *bcdasc(char bcd)s
extern int bcd_intichar bad);

extern char *ctohi char byte);

extern char int-bedi nt decimal);

extern char *itoa(int n, char sH])s

extern char tolower(int c);

extern char *uitohlunsigned int word);

L. FILENAME CONVERT.C

/* convert.c */

#include "vibro.h"

#include "inout.h"

#include "global.h"

char atoh(char *ascii})

unsigned int atohexint(char ascii]);

int atoilchar *s);

char *bcd-ascichar bcd);

int bcdint(char bcd);

char *ctoh(char byte);

char int-bcdlint decimal);

char *itoatint n, char s[);

char tolower(int c)s

char *uitoh(unsigned ant word);

/* This routine converts a two-byte ASCII string representing a valid

hexadecimal byte into a single hexadecimal byte. */

char atoh(char *ascii)
/* "ascii" is a string representing a hexadecimal byte. C/

C

int is

char result; /* The hexadecimal byte after conversion. */

result x O

for (iaO)i < HSTRLEN 98 asciiaii !x NULL;++i) C

result *= 16)

if ('0' <z ascii~i) && '9' > asciitil)

result +2 asciiii) - '0';

177

else if ('a' I: asciiti] && 'f, >2 ascii(i))
result +: 10 + ascii(i) - 'a')

)

return result)s

/* This routine converts a four-byte ASCII string representing a valid

hexadecimal word into a single unsigned integer. a/

unsigned int atohexint(char ascii(l)
C

int is
unsigned int result) /* The hexadecimal word after conversion. 5/

result = O
for (i=O)i < HEXINTSTRLEN && ascii[i] != NULLs++i)

result *= 16;

if ('0' <= ascii(i] 8& '9' >= ascii(ill

result +: ascii(i) - '0';
else if ('a' <= ascii(i] && 'f >= ascii(i))

result *= 10 + ascii(i) - 'a')
)

return(result))

int atoilchar *s) /* convert string to integer */
(

static int n, sign;
sign = 1;
n = 0;
switch (*s) C

case '-': sign = -1
case ++: *+s;
)

while (*s >= '0' && *s <= '9') n 10 nn + *s++ - .01;
return(sign * n);

/* Convert a byte of binary coded decimal date to character string format. 5/

/l No check is made to ensure that input data really IS in lCD format. 5/

char *bcd-esc(char bed) /* Tested March 16, 1987 5/

static char asciiC3);

int bcdints

bcdint = OxOOff A ((int) bod)s /* Convert to integer. a/
/* If the tens digit is a zero, put a blank in its place)

otherwise, put an ASCII digit there. a/

ascii(0] 2 (OxfO & bodint) ?
(0x30 I (bcdint >> 4)) *

ascii(l) = Ox30 I ((bcdint 8 OxOf)); /* Get the units digit. 5/

ascii() z NULL; /* Terminate the string with
a null. a/

178

return(ascii)
)

/* Convert a byte of binary coded decimal data to integer format. */

/* No check is made to ensure input data really IS in BCD format. /
int bcdint(char bcd) /* Tested March 16, 1987. 5/

/* "bcd" is the BCD character to be converted. 5/

int bcdint, result;
/* Take the units by masking off the tens. 5/

/* Then throw away the units and keep
the tens.*/

bcdint = OxOOff & (int) bcd;
result = OxOOOf & bcdinti
/*Multiply the tens by 10, and add to result.*/
result += 10 * (bcdint - 4);

return(result)l

/* Convert a character to hexadecimal ASCII string format. 0/

char *ctoh(char byte)
{

static char ascii[HSTRLEN]s

int byteint, nibble, bases

byteint = OxOOff & ((int) byte)) /* Convert to integer. 5/

nibble = byteint >> 4 /* Get the tens digit. */
/* Find out whether the nibble is in the range [0-91, in which

case its ASCII representation starts at Ox3O 148 decimal), or
[10-15], in which case the ASCII representation starts at
A = Ox4l (65 decimal). In the latter case, add the value of the

nibble to 65-10 = 55. */
base = (nibble >= 10) ? 55 48;

ascii[O] = base + nibble;
nibble = byteint A OxOfi /* Get the units digit. 5/

base = (nibble >= 10) ? 55 481
asciill] = base + nibble;
ascii[Z] = NULL; /* Terminate the string with

a null. 5/

return(ascii)

/* This routine converts an integer to a binary coded decimal character.
Since 99 is the largest legitimate BCD nuber, the argument "decimal"
is taken modulo 100. /

char int-bcd(int decimal)
/* "decimal" is the nuiber to be converted. 5/

C

int result)

/* Make sure decimal is a positive number. 5/

decimal a Idecimal < 0) ? -decimal : decimals

decimal Z= 100) /* If decimal is too big, take

179

it modulo 100. */
result (decimal / 101 << 4s /* Get the tens and shift them into the

high order half of the byte. */
result += decimal X 10) /* Add in the units. */

return((char) result);

/* itoa - convert n to characters in s.
This program is from TOOLNORKS C/80, Version 3.1, by Halt Bilofsky. 1/

char *itoatint n, char s[1)
C

static int c, k;

static char *p, *qj

if ((k = n) < 0)
k = -K)

q p = s)

do
*P++ = k X 10 + '0')

w while (k /= 10))

if fn < O) *p++ =
0p = 0;

while (q < --p) C
c = *q q++ = *p) *p = c)

return (s))

/* tolower - if the input is in [A..Z), convert to lower case
This program is from TOOLHORKS C/80, Version 3.1, by Halt Bilofsky. */
char tolowerlint c)
C

if ('A' = c && c <= 'ZI)

return (c + OxZO ;
return c;

/* Convert an unsigned integer to hexadecimal ASCII string format. 5/

char *uitoh(unsigned int word)

static char ascii[HEXINTSTRLEN + 11;

unsigned int nibble;

int is

asciiEXINTSTRLENJ a NULL;

for (izOi < HEXINTSTRLENs++i) {
/* Get the current nibble, in order from most to least significant. 5/

nibble a OxOOOf & (word >> (4 0 (3 - i)));
/* If nibble >a 10, convert it to a letter from 'A' to F'.

If nibble < 10, convert it to a letter from '0' to '9'. /
asciili) = (nibble >= 10) ? ('A' + nibble - 10) : ('0' + nibble)$

)

return(asciii)

ISO

NI. FILENAME DELAY.H

/* This file contains external prototyping declarations for all functions

in "delay.s". */

extern void delay(int n i

N. FILENAME DELAY.S

delay.s
* Adapted from a program by Mr. David Rigmaiden of the

I Space Systems Academic Group at the Naval Postgraduate School.

#def ine LOOPCOUNT 1041

; Delay for n hundredths of a second.

void delay(tn)
int n) /* The number of hundredths of seconds of delay desired. 5/

export delay

region code

delay: push ix t=15T.

Cause ix to point to the first parameter.

ld ix,4 t=l4T.

add ixsp ; t=15T.

ld c,(ix+O) t=19T.

ld b,(ix+l) t=l9T.

LOOP1: ld de,$LOOPCOINT t=l0T.

LOOP2: dec de t= 6T. Count down to zero in LOOP2.

ld a,d t= 4T.

or a t= 4T.

jp nzLOOP2 tlOT. I nner loop t=24T.

dec bc ta 6T. Repeat LOOPl until time is up.

ld a,b t: 4T.

or c t: 4T.

ip nz,LOOPl s t=lOT. Outer loop t:(34424*LOOPCOUNT)T.

pop ix ; t=14T. Restore ix to its initial value.

rot ; tlOT.

Total Delay s(106+(34+24*LOOPCOUNT)*n)T.

Solve nlO ms x (106+i34+24+LOOPCOUNT)*n)T with T a 1/f a 400 ns to

I get n a LOOPCOUNT. f a Z.5 MHz. For n2lO0, LOOPCOUNT a 1041, leading
$ to a delay of 1.0008 s for an error of 0.08Z. For ncl,

I this leads to a delay of 10.05 ms instead of the 100 ms reqired, for

I and error of 0.SX.

i8!

0. FILENANIE EXPMNT.H

extorn, char ad-readtchar);
extorn, it adtoint(char addata,unasigned long multiplier);
extorn, void alter~pageO(struct page~data * pagezero);
extern, char badideato-record(char show);
extort, char baro_switchfvoid)s
extern, char checJkprt~void))
extern char coldor-than(int reference)s
extorn, void display..data-.page(struct fulllog-pago * datapage);
extern, void displaypageO(struct pageOdata *pagezero);

extert, void do-sweepivoid)s
extert, void expw't(void);
extor, void initializo(vojd);

extorn, char listen(void);

extort, char logeventichar event);
extern, void log-jnenutvoid))
extern, void read-ad(void);
extor, void shut-down(void);

extern void shut-down-nojlog(void3;
extern char ssdrmode(char mode))

extor, char ssdr-status(voidi;

extern char voltages lowi void);

extern char we-lauznched(void);

P. FILENAME EXPMINTC

/* expmnt.c N

#include "vjbro.h"

#include "clock.h"
#include "convert.h"
*include "inout .h"
#include "main.h"
#include "power .h"
#include "newio.h'

#include "bubble.h"
#include "global.h'

char ad-read(char port))
int adtointichar addata,unsigned long multiplier);
void alter.pageOE struct pago~data * pagezero);
char bac~idea to..record(char show);
char baro..swi tch(void);
char checkprt(void);
char colder-.thenlint reference)i
void display..data-page(struct full-log.page * datapage);
void display..pageO(struct pege~data * pagezero);
void do..sweep(void);

void expmnfl void);
char initialize~void);
char listen(void)s
char logavent~char event);
void log-menu(void);
void monitor-heaters(void);

182

void post-launch(void)i
void record(void);
void shut-downivoid);
void shutdonn_nolog(void)l

char ssdrmode(char model;

char ssdrstatus(void)J

void shortexperiment(void)

void show-event(char event)i

char voltages_lowi void)

char we-launched(void) i

/* This routine gets data from the analog to digital converter. */
char ad_read(char port)
C

output(portO)) /* You must write to the port before you

can read it. 5/

delayl 1)

return(input(port));

/* This routine converts a byte of data from the A/D converter into an

integer. In order to reduce the amount of code generated by the compiler,

it uses no floating point operations.

The routine assumes that the converted value lies on a line which passes

through the origin and whose slope tin some arbitrary units) is given by

the multiplier. Consequently, this routine always converts value of zer

to zero.

To obtain the correct multiplier amounts to calculating the slope and

scaling it to permit integer operations to succeed.

For example, assume that a value of 255 in the A/D converter (the

maximum possible) represents 15V. A difference of 1 in the value

read by the A/D converter represen+s

15V / 255 divisions = 58.8235 mV/division.

Multiply this by 1E6 and round off to get the basic multiplier:

58.8235 * 1E6 = 58824.
Using this multiplier will give results in units of volts. To get units

of tenths of volts, say, increase the multiplier by a factor of 10 to

588,240. The result will be an integer representing the chosen units)
the decimal point is implied to be to the left of the rightmost digit.

To avoid an overflow upon multiplication, the multiplier should

be kept less then

(25532)/255 u 16,843,009.

The greates achievable accuracy is obtained when the multiplier is scaled

up by multiplies of 10 as much as possible without exceeding this limit.
N,

int adtoint char addata,unsigned long multiplier)
C

/* During compilation, this line will be flagged because it presents

the possibility of truncation. The problem is not serious as

long as the limit on the multiplier is observed, as discussed above. 5/

unsigned long value; /* A long integer version of "addata". /

value 2 (unsigned long) addata;

183

returnf lint) 11(value * multiplier) + 500000L) / lOOOOOOL M))

/* This routine allows the user to alter the flags and pointers in page zero

for the purpose of permitting program functions to be tested thoroughly.

Use caution in altering them. */

void alterpago(struct pageOdata * pagezero)

char data; /* Holds a character from the keyboard. W/

char changes = FALSEs /* TRUE if the page zero needs to be altered,

FALSE otherwise. He know that no unsaved

changes have been made to page 0 before this

routine is invoked, so we set this to FALSE

initially. */
/* Variable "flag" is used to permit the values 0 and 1 to be displayed

as FALSE and TRUE respectively. */

static char *flag[= C

"FALSE",

"TRUE"

/* Display this menu repetitively until choice Z is made. N/

whilelTRUE) C

printf("

A Toggle 'sweepstarted' flag from Xs to Xs. n r

B Toggle 'launchdone' flag from Ys to Xs. nr

C Alter value of next available page from Ox~x = Zd. n r

D Alter value of next available half page from Xu to Xu. n r

E Toggle 'fullexperiment' flag from Xs to Zs. n r

F Specify the 'RECORD starttime' (make this at least 12 hours before thenr

present to permit RECORD mode to be initiated.)n r

Z Exit this menu. n r",

flagipagezero->sweepstarted ? 1 : 0 1,

flag[pagezero->sweepstarted ? 0 1,

flag[pagezero->launchdone ? 1 0 1,

flag(pagezero->launchdone ? 0 1 1,

pagezero->page, pagezero->pagep

pagezero->halfpage,

(pagezero->halfpage == 0) ? 1 : Op

flag~pagezero->ful_experiment ? 1 : 01,

flag~pagezero->fullexperiment ? 0 11

/* Znput a character, convert it to lower case, and display it. */

data z tolower(trmin())

printf("Yc n r" ,data)i

switch (data) C

case 'a,: /t Complement the "sweepstarted" flag. */

pagezero->sweepstarted a !pagezero->sweepst&arted

changes a TRUEs

break; /* Complement the "launchdone flag. e/

case 'b':

pagezero->launchdone a !pagezero->lunchdone)

184

changes = TRUE;
breaks

case 'c': /* Ask the user for a page number. Let this be the
next page used for recording items in the log. */

pagezero->page = getpageno(s

changes = TRUEs
breaks

case Id': /* Complement the "halfpage" number. */

pagezero->halfpage = (pagezero->halfpage == 0) ? 1 : O
changes = TRUE;
break;

case e: /* Complement the "full-experiment" flag. *1
pagezero->fullexperiment = !pagezero->fullexperiment;

changes x TRUE;
breaks

case If: /* Ask the user for a new "RECORD-start-time". N

gettime(& (pagezero->RECORDstarttime))

changes = TRUE)
breaks

case 'z': /* If any changes have been made, store them in page

0 and quit this routine. */

if (changes) (

if I !bubio1BHRITE,O,(char *) pageO buffer)) C
printf("Update to page 0 failed. n r")I

)

I

return;
default:

printf("Use a valid letter, please. n r")j
)

I

/* This routine checks to see when RECORD mode was last initiated.

If this time was within the last 12 hours, the routine returns TRUE,

meaning that it is not a good idea to enter RECORD mode now. This
will avoid a situation where RECORD mode is restarted in the middle
of a mission, wiping out the recorded data. "show" must be TRUE to display

the time when RECORD mode can begin. If it is FALSE, the display is

suppressed. */

char bad_idea-torecord(char show)
C

struct datetime current-time)

struct idatetime icurrent-time) /* Integer version of
current time. C/

struct idatetime istoredtimes /* Integer version of

stored time. */
struct idatetime iRECORD-delaytime; /* Integer format of time when

RECORD mode can begin. */
struct idatetime iRECORD-delay.onmtants /C Integer format of minimum

time between successive

startings of RECORD mode. C/

iRECORD-delayconstant.imonth a iRECORD-delay-constant.idate a
iRECORDdelay-oonstant.iminute z iRECORDdelayconstant.isecond a O

185

iRECORDdelayconstent.ihour a RECORDDELAY)

/* Get the current date and time and convert to integer format. 0/

clockread(¤t_time)l
clockint (¤t-timea&icurrentt ie) I

/* Get the date and time stored in the bubble memory as the last time
that RECORD mode was initiated and convert to integer format. C/

clockinti(pagezero->RECORD_starttime),&istored-time)s

/* Add the two dates and times to get the next time when RECORD mode can
be initiated. */

clocksum(&iRECORD_delay-time,&istoredtime,iRECORD delay constant)s

if (show) C
printf("Current time: ");
dump-clock(¤t-time)l

printf("Time when RECORD mode last was begun: ")I
dump_clock(&l pagezero->RECORODstrtt ime) I
printf("Time when RECORD mode can be begun again: "))

dumpiclock(&iRECORD-delaytime);

/* Return TRUE if the current date and time is less than RECORD-DELAY
hours after the stored date and time. Otherwise, return FALSE. 0/

return clockcompare &iRECORD-delayt ime,&icurrenttime));

/* Check to see if the barometric pressure switch tripped.
Hake an entry in the log and return TRUE if so; return FALSE otherwise. 0/

char baro-switch(void)
C

char addatas /* Holds a character from port READC1. C,

/* If the BAROON bit of the READC1 port is TRUE, then the barometric

switch has been triggered. 0/

addats inputiREADCI1;

if laddata & BAROON) C
printf("Barometric switch triggered. n r");
logevent (OPRESSURE);

)

/* This routine checks to see if there is a printer conmected to the
controller. It returns TRUE if there is one, FALSE otherwise. C/

char cheockprt(void)

/0 If the TERMON bit of the READC1 port is O, then a terminal
is connected. In this case return TRUE) FALSE otherwise. C/

returni irnutIREADCI)) & TERMON)s

186

/* This function displays the data in page zero. e/
void display_lagef struct pageOdata a pagezero)
C

printf("Sweepstarted "

if (pagezero->sweepstarted)

printfi"TRUE ")I
else

printf("FALSE ")
printf("Launchdone a 11)i
if (pagezero->launchdonel)

printfV"TRUE "I
else

printf("FALSE ",)
printfl"Full-expmnt = ")s
if (page&zero->fullexperiment)

printf("TRUE n r");
else

printfI "FALSE n r"))
printff"Last time RECORD mode was initiated: ")I
dump_clock(&!pagzero->RECORD-start-time))s

printf("nrNext page : Ox.x : .u ", pagezero->pagepagezero->page)I

printff "Next halfpage = Ox.x = un r", pagezero->halfpage,

pagezero->halfpage);

/* This function returns TRUE if the bubble memory's temperature is below

the reference value; FALSE otherwise. V,

char colderthan(int referencel
C

char addatas /* Holds a character from the A/D. */
int temperatures /* The current temperature in degrees K. *1

/* Read in the temperature of the bubble memory. 0/

addata = ad-readITEtlP4)

temperature = adtointl addata ,tULTTEMP);
return((temperature < reference) ? TRUE : FALSE)I

/* This function displays a page of data. /

void display-datapage(struct full.log.page udatapaga)

char addatai /* Holds a character of date from the A/D. /

int page; /* The desired page number. /

int halfpagej /* The current halfpage nuaer.*/

int i; /* Counts through the valid A/D addresses. V,

int values /* The data from the A/D converted into useful

units. 0/

printff "Which page of data do you want to see? n r")s

page Z getpgeno()I
if rlbublo!BREADpage,log-buffer)) C

printfl"Couldn 't read page Yu. n r",page);

187

return;

printff "Contents of page Ox~x = Xd: n r",pago,page) i
for (halfpage=0~halfpage <BLOCKS.PER.PAGE(.halfpage)(

printf(Half page Xd: n r V",halfpage);
dump.clock(3 Cdatapage- >half-.pageC ha lfpae .clock I
show..event(datapage-*alf..pagelhalfpage I event)

/* "adcaption" is defined in file "global.c".

for (i=O~i < ADPOINTS;++i) C
addata z datapage->half~pagethalfpageI. atod ii)
printfi "X-24szX3.Odz",.adcaptjon[i ,addata)s
if (i <= 2) C /W The AID reading is a voltage, in this case. W

value = adtoint(&ddata,(i==Z)?MULT-lOV : MULT_.20V)j

value/lOD ,valueyloo)l

! so (/N The A/D reading is a temperature, in this case. *
value =adtoint(addata,IJLT-.TEMP);

prnf"6)d vaul

/W Print two points per line. W

if ((0 != i 7 2) 11 i ==ADPOINTS - 1,1

printff " n rl) I

/* This function causes the "sweep" to be performed. W

void do_sweeptvoid)

printfl'Turn on SSOR and A/D Converter and place SSDR in SWEEP mode. n r" I
logeventlpowerwrite(ADON) ? CSONAD :CFONAD~s

logevent(power-.write(SSDRON) ? CSONSSDR :CFONSSDR);

logevent(ssdrmodelS4EEP) ? CSSI4EEP :CFSH'EEP)I

printf("Hait 10 seconds before starting sweep. n r")
t imeout(10 ,SECONDS)s
/*W &ait for timeout or for a key to be pressed. W

whilel !timeout(NULL,NULL) I C

if (look-ahead.discard)

break;

printfV'Turn on VCO. Wait 13 minutes. n rII)

logeventi power..write(VCOCN) ? CSONVCO :CFONVCO);

timeoutl 13,MZINTES)i

while (TRUE) C
if Issdr-statuso) = OPCOMP)

logevent IDOPCOIIP);

breaks

if (timeout(NU&LL,I(JLL) 11 lookahead~discardo) C
logeventi ONOOPCOIIP);

breaks

printf(ISweep phase is over. Turn off VCO, A/C Converter, and SSDR. n r"

1 88

logevent(pcwerwrite(VCOOFF) ? CSOFFVCO : CFOFFVCO1
logevent(poweryrite(SSROFF) ? CSOFFSSDR : CFOFFSSDR)i
logeventlpowerwrit(ADOFF) ? CSOFFAD : CFOFFAD)s

logevent(DSIEEP)s

/* This function performs the Vibro-ecoustic experiment../
void expmnt(void)

* C

char mission-statuss /* Can be DAPUON, OLAUNCH, OOPCOMP, ONOOPCOMP,

or DABORT. Used to control program flow. 0/

if (!initializel) (

printfl"The bubble memory log is full.
Running the experiment anyway. n r") 3

:)

/* Check to see whether we should operate the full experiment or not. 0/

if (!pagezero->fullexperiment) C

short_experiment(;

returns

/0 Check the sweepstarted flag in page zero of the controller's bubble

memory. It's TRUE if the sweep has been started previously,

false otherwise. */
if (!lpagezero->sweepstarted)) (

printf("Starting the sweep. n r");

do_swepfl)

else C
printf("Sweep was done previouslyp so we're skipping it. n r")I

I

/0 Check the launchdone flag in page zero of the controller's bubble

memory. It's TRUE if the launch has already taken place; FALSE

otherwise. */

if (!(pagzero->launchdone3) C

/* Keep on listening, until you detect either the APU, or the

launch. If you run out of time, assume the mission

was aborted. */

printfi"He haven't launched yet. Listening for the APU. nr")i

missionstatus a listen);

printf("Tuming on the SSOR, because listen() detected something. n r")s

logevent(powerwrite(AON) ? CSONAD - CFONAD);
logevent(powerwriteISSRON) ? CSNSSDR : CF0NSSDR);

if (mission_status zz DAPUON) C

printf"APU is on. Initiate a 10 minute timeout. n r\

Plauing SSDR in SCROLL mode. n r"3);

logeventissdrmode(SCROLL) ? CSSCROLL : CFSCROLL)3

timeout(10,HINUTES)i

while (TRUE) (

if Ewe-launchadl anu DLAUMCH) C
printf("He launched. n r")t

missionstatus a DLAUNCHI

break;

189

)

if (timeout(NULL,NULL) II lookaheaddiscardo)) C
printfI"We timed out and are aborting the mission. n r")I
missionstatus a DABORTi

logevent(DABORT);
breaki

3
)

3 else C /* Launch was done previously. 5/

logevent(PRIORLAUNCH)
missionstatus a PRIORLAUNCHs
printf("He have previously launched and are in space now. n r

Assume mission has been successfully completed.,n r" 1);
)

if Imission status zz DLAUCH) C
printf("Putting the SSDR in LAUNCH mode. nr,

Initiating a 3 minute timeout. n r")s
logevent(ssdrmode(LAUNCH) ? CSLAUNCH : CFLAUNCH)l
timeout(3,MINUTES)
while (TRUE) (

/* If we haven't recorded a completed launch, check the barometric

switch. If it has been triggered, then we should record one. 5/

if (!pagezero->launchdone)

baro-switch()
if (ssdr-status() DOPCOIP) C

printf("SSDR reported OP COMPLETE. n r")

logevent(DOPCOMP)i

break;
3

if (timeout(NULL,NJLLI It lookahead discardf)) C

printft"SSDR never reported OP COMPLETE. He timed out. nr")j

logevent (NOOPCOMP)

break;
3

3

if (missionstatus != DABORT)

post-launch)

/* This routine reads page 0 from bubble memory in order to initiate the

experiment properly. 5/

char initialize void)
C

int i) /* A counter which permits more than one attempt

to read the bubble memory. */

char powerjport) /* Holds the status of the power subsystem. 5/

printf("Read from page 0 of the bubble memory. nr")j
/* Attempt to read from page 0 up to STRIES times before giving up. */

fort izO;!bubtotBREADO,pageO_buffer) &S i <= BTRIES +4i)1

displaypageO pagezeroI)

if tpagezero->page > MAXPAGE) C

return(FALSE

190

forti=O)i < BTRIES;++i) (
if(bubio BREAD ,pagezero->page,log.bufer)) C

printfl "logevent INITIALIZE) n r"))
logevent(INITIALIZE);

powerport=powerstatus();

if IVCOOFF & power,_port) C

printf("Turning the VCO power subsystem off. n r");
logevent(power write(VCOOFF) ? CSOFFVCO : CFOFFVCO)i

)

if (HEATOFF & power-port) C
logevent(power-write(HEATOFF) ? CSOFFHEAT : CFOFFHEATJ;

printf("Turning the heater subsystem off. .n r")
3

return(TRUE);
3

3

return(FALSE)

/* This function returns DAPUON if the APU is oni DLAUNCH if the shuttle

has launched; FALSE if neither event is detected, but exit is forced by
the pressing of any key on the terminal. */

char listenivoid)

char portcli /* This holds the contents of NSC810 #1 port c.*/

printf("Turning Matched Filter on. Kait for detection or a keystroke. nr"))
/* Turn on the matched filter, and listen for the APU. If the matched

filter is already on, this command has no effect. */

logevent(power write(MATFON) ? CSONIATF : CFOtNMATF))
while (TRUE) (

if twe launchedf) == DLAUNCH)

return DLAUNCH)

portcl = input)READC1))
if (portcl & APUON) C

printf("APU detection occurred. n r °)3

logevent) DAPUON);
return DAPUON);

3

/* Exit this function if any key on the terminal is pressed. */

if Ilook ahead_discard)
return(OUSERNOAPU);

/* Log an event. This function returns TRUE if the event was logged

191

satisfactorily, FALSE otherwise. *
char logeventichar event)

int i; /0 A counter. *
char *buffer-.ptr; 1* A pointer into the log page buffer. *
char full$ /* TRUE when all available pages are

used up. */
buffer..ptr a log..bufferi /* Make bufferptr point to the start of

the log buffer. s
full a pagezero->page > 1IAXPAGE;

/* If the bubble memry is full, there's no point in going on. Return. e
if (full)

raturn(FALSE)i

/* blank out the buffer if this is a new page. This guarantees thet
old data won't reside in the up~per half-page when the new page is
written to the bubble nemory. 5

if (pagezero-'halfpage ==0) C
for (i=0~i < PAGELENGTH;++i) C

(*buffer-ptr*+) zOxOO)

/* Fill the current log block with new data to be logged. *
clockread(

log-Page->
helf..paget pagezero->halfpage1. clock

log..page->
half-page[pagezero->halfpageI. event zeventi

/* Read the A/Ds and put their contents in the log, too. 5
for (i=0ii < ADPOINTSi+)

logpage->
half-pageEpagezero->halfpagel .atodC iI

adread~adportti)

if (event a3t CSSb4EEP 11 event ax CFSIEEPJ C
pagezero->sweepstarted aTRUE;

if (event zzOPRESSURE)C
pagezoro-lawunchdone a TRUE;

/* Write the new page of data to the bubble memory. 5

bquhiol SNRITE Apegezero-:Peeo, log.buf for)3;
if (pagezoro->halfpage >2 SLOCKSPER-PAGE - 1) C

if14+s1paguzero-Nmeg)) > MAXPAGIJ (
printf("Subble memory is all used eup.%nr"1j
resturn(FALSE)i

pagazaro-*holfpsge a 0)
)elseC

192

*+(pagezero->halfpage)s

/* Update page 0 in the bubble memory. */
bubiol BIRITE ,O ,pageO-buf fer)
return(TRUE) /* If you got this far, you know you haven't yet

run out of bubble memory. Return TRUE to show
successful logging of an event. */

/* This routine provides a menu of choices for examining or changing the
contents of the bubble memory. 0/

void log.-menu(void)
C

char data; /* Holds a character from the keyboard. 0/

/* Read page 0 from the bubble memory. 0/

if (!bubio(BREAD,O,pageO_buffer)) (

printf("Couldn't read page 0. nr")),
return;

3

/* Display the menu repetitively until Z is chosen. 0/

while (TRUE) C

printf("

A Display page 0. n r

B Display a page of the log. n r
C Alter the contents of page 0. n r

Z Exit this menu. n r"
)I
data = tolower(termini);
printf("Zc n r" ,data))

switch (data) C
case 'a':

display-pageO(pagezero)i

break;

case 'b':

display-datapae(logpage);
break)

case 'c':
alter..pageO(pagezero)i
break)

case 'Z':
return)

default:

printf("Use a valid letter plsase.nxr");

/* This routine monitors the temperature of the bubble memory used for

logging data and operates the heaters to keep the temperature within

193

the desired range. */
void mnitor_haters(void)
C

char powerport; /* Holds the status of the power subsystem. */

power..-Port z power-statuai ()

/* If it is cold enou, and if the heater is not yet on, turn it on. C/

if (colds.r_than(MINDESIRABLETEMP) &AI (HEATOFF & powerport)) C

printf("Turn on the heaters.,n r"))

logevent(powerwrite(HEATON) ? CSONIHEAT : CFONHEAT);
return;

)

/* It is is warm enough, and if the heater is already on, turn it off. C/

if (I!colder-thn(MAX-DESRABLETEMP)] && (HEATOFF & powerport) C

printf("Turn the heaters off. n r")I

logevent(power write(HEATOFF) ? CSOFFHEAT : CFOFFHEATJ)

)

void post_launch(void)
{

printf("We're shutting down all power. n r")

shutdown();

while (TRUE) C

printf("Reading A/Ds every 5 minutes. n r")I

timeout(5,MINUTES 1;
while (!timeout(NULLNULL)) C

monitorheatersl);

if (!pagezero->launchdone)

baroswitch()

if (look-aheaddiscard(3)

break;
)

logevent(READAD);

if (voltages_low(!) C

printf("Voltages are too low. Terminate the experiment. nr");

logevent(TERMINATE);

break;
3

/* This routine performs the RECORD phase of the abridged experiment. C/

void record(void)

printf("Entering RECORD mode. n'r\

Turning on SSDR and A/D Converter. n r");
/I Store current time in page 0. This is a record of the time when

RECORD mode last was begun. The next time logevent() is called,
the data will actually be stored in page 0. C/

194

clockread(&(pagezero->RECORDstart-time));
logevent(power-write(ADON) ? CSONAD : CFONAD);
logeventfpowerwrite*SSORON) ? CSONSSOR : CFONSSDR)s
logeventtssdrmode(RECORD) ? CSRECORO : CFRECORD);
printf("Initiating a 20 minute timeout. n r" J
timeout(20 ,MINUTES)s

while (TRUE) (
/* If we haven't yet launched, check to see if the barometric

switches have fired or not. C/

if !pagezerlo-lawuchdone) (
baro_switch();

)

if lssdrstatus() :z OPCOP) C
logevent(DOPCOMP);
break;

)

if (timeout(NULL,MJLL) II lookaheaddiscard!)) C
logevent(DNOOPCOMP);
breaks

)
)

printf("Record phase is over. Turn off A/D Converter and SSDR. nr" I
logevent(power-write(SSOROFF) ? CSOFFSSOR : CFOFFSSDR);
logevent(powerwrite(ADOFF) ? CSOFFAD : CFOFFAD))

/* This routine operates an abbreviated version of the experiment which
avoids doing the "sweep", and uses only RECORD mode in the SSDR. m/

void shortexperiment(void)
{

char showflag; /* This flag is TRUE to make bad-ideato_recordo

display computed times; FALSE otherwise. C/
if (pagezero->launchdone) {

printf("We have previously launched and are in space now. nr"))

logevent(PRIORLAUNCH);

whilel !pagezero->launchdone) {
/* If RECORD mode was initiated too recently, we don't

weant to try it again. Wait for a suitable interval to elapse before

continuing. bad-idea-to-reco-d() knows how long this is.
Alternatively, the user can press a key to avoid waiting. /

showflag z TRUE; /* Have bad ideatorecord() display computed
times the first time through. /

while (bad..idea_to..recordlshowflag)) C
showflag a FALSE;
if (lookahead_discard)

breaks
*)

/* Nait for indications of a launch. 5/

listeno 3;
/* Enter RECORD mode. 5/

recordl))

195

if (!pagezero->launchdone)

baro-switch();

/* Now that we're in space, perform post-launch operations. */
pos t_leunch!]

/* This function displays the meaning of an event code. /

void showeventEchar event)
(

/* "event" is an index into the following array of messages.

It is one of the event codes given in the "vibro.h" file.

If someone changes it, someone had better change these messages to

correspond, or the results will be disappointing.*/

static char *message(] = (

"Initialization. n r",

"Sweep-mode command issued. n r",
"Sweep-mode command accepted. n rl,

"Sweep-mode command not accepted. n r"

"Sweep-mode completion detected. n r",

"APU detected. n r",

"Scroll-mode command issued. n r",

"Scroll-mode command accepted. n r",

"Scroll-mode command not accepted. n r",

"Launch detected. n r",

"Launch-mode command issued. n r",

"Launch-mode command accepted n r",

"Launch-mode command not accepted. n r",

"Barometric switch detection. n r",

"SSDR did not give OP COMPLETE within the allotted time. n r",

"SSDR reported OP COMPLETE. n r",

"Mission abort inferred. n r",

"SSDR ON command issued. n r",

"SSDR ON command succeeded. n r",

"SSDR ON command failed. n r",

"SSDR OFF command issued. n r",

"SSDR OFF command succeer-'d. n r",

"SSDR OFF command failed, n r",

"VCO OFF command issued. n r",

"VCO OFF command succeeded. n r",

"VCO OFF command failed. n r",

"VCO ON commind issued. n r",

"VCO ON command succeeded. n r",

"VCO ON command failed. n r",

"*/0 OFF command issued. n r,

"A/D OFF commend succeeded., n r-,

"A/D OFF commmnd failed. n,r",

"A/D ON command issued. n r",

"A/D ON ommand succeeded. n r",

"A/D ON command failed. n r",

"MATCHED FILTER OFF command issued. n r",

"MATCHED FILTER OFF command succeeded. n r",
"MATCHED FILTER OFF command failed. n r",

196

"MATCHED FILTER ON command issued. n r",
"MATCHED FILTER ON command succeeded. n r",
"MATCHED FILTER ON command failed. n r",
"BUBBLE MEMORY HEATER OFF command issued. n r",
"BUBBLE MEMORY HEATER OFF command succeeded. n r",
"BUBBLE MEMORY HEATER OFF command failed. n r"

"BUBBLE MEMORY HEATER ON command issued. n r",
"BUBBLE MEMORY HEATER ON command succeeded. n r',
"BUBBLE MEMORY HEATER ON command failed. n r",
"READ A/D command issued. n r",
"Experiment terminated.'n r",
"User interrupted the wait for APU detection n r.",
"Invalid command. n r",
"Launch occurred before the last program initialization. n r",
"RECORD mode command to SSDR succeeded. n r",
"RECORD mode command to SSDR failed. n r."

printf(;tessage[event]))

/* This routine removes power from any relays which have it, and logs the

fact. */

void shutdown(void)
(

char power port; /* Holds the status of the power subsystem. */

power-port = power statust);
/* Remove power from all subsystems which currently have power. */

if (SSDROFF & power-port)
lcgevent(power-write(SSDROFF) ? CSOFF$SDR : CFOFFSSDR);

if (VCOOFF & power port)
logeventipowerwrite(VCOOFF) ? CSOFFVCO : CFOFFVCO)

if (ADOFF & powerport)
logeventipower_write(ADOFF) ? CSOFFAD : CFOFFADJ;

if (HATFOFF & powerport)
logevent(power_write(MATFOFF) ? CSOFFATF CFOFFMATF);

if (HEATOFF & powerport)
logevent(powerwrite(HEATOFF) ? CSOFFHEAT CFOFFHEAT);

-

/* This routine removes power from any relays which have it. It does not

log the fact. */
void shut-down nolog(void)
{

char power_,port) /* Holds the status of the power subsystem. */
power_port = powerstatus(])

/* Remove power from all subsystems. */

if (SSDROFF A power-port)

powertwrite(SSDROFF)
if IVCOOFF S power_port)

powrjwrite#VCOOFF))
if (ADOFF & powerport)

powerwrite(ADOFF)

if (MATFOFF & powerport)
power write(HATFOFF)3

197

if IHEATOFF A powerport)

powerwritea HEATOFF)

/* This routine sets the SSOR's mode. 5/

/* "mode" is a coded SSDR mode. See file "vibro.h". m/

char ssdrmodechar mode)

nt it /M A counter. 5/

char statust /* Hexadecimal status, used for debugging. 5/

/* Repeat the following code several times if the SSDR does not
immediately appear to be successful. 5/

for(i=O;i < TRIES;++i) C
output(SSDROUT,mode)t /* Output a mode command to the SSOR. 5/

/* Hait for the SSDR to respond. */

delay(Z); /* Delay 2 x 10 ms to get a valid
status. 5/

status = ssdrstatus();
if (status == NORMOP) (

/* Adding 1 to a mode gives the code for a successful operation. */
printf("SSOR returned NORMOP in response to command OxCx. n r"p

mode);

return(TRUE)i
3

/* The SSDR did not confirm the proper mode was set.
Try again. After you give up in disgust, signal
failure by returning FALSE. 5/

3

printf("SSOR did not return NORMOP in response to command OxZx. n r",mode)s
return(FALSE);

/* This routine gets the SSDR's status. 5/

char ssdrstatus(void)
C

return(irnut(SSDRTN))

/* This function returns TRUE if the power supply voltages are too low)
FALSE, otherwise. */

char voltages*law void)

int voltages /* Holds the voltage in hundredths of a volt. 5/

char addata; /* Holds the voltage as read by the A/D. 5/

/* Read in the voltage on the 1o bus. 5/

addet z ad_read(VOLTZ);
/* Convert to hundredths of a volt. e/

198

voltage a wdtoinfladdatlIULT-..OV)i
if (voltage -c MINVOLTAE_.101 C

return(ITRUE i

ratun(FALSE)

char we_lataichedi void)

char portdata; /* Holds the port data. *

1* Check' to see if the barometric pressure switch tripped. a
baro..switch(3

portdats 2 input(READCl))
if (IVIB_.ON I BARO_.ON) & portdata)

printf("Launch detected. Turning matched filter off. n r") I
logeventl DLAUNCH);
logevent(pwerwritEMATFOFF) ? CSOFFPIATF CFOFFMATF);
return (CLAUNCH)s

return(FALSE)

Q.FILENAME FPLUTC.C

/* fptatc.c 0/

#include "inout .h"
;Pinclude "vibro.h"
#include "expwnt.h'
#include "newio.h"

int fputc(int chr, void *devico)s

/* Sit 0 of the serial port is TRUE if the serial port is ready to write
a character; FALSE otherwise.
Bit 1 of the serial port is TRUE if the serial port is radly to read
a character) FALSE otherwise. U

struct rs23Zc C
unsigned mnt :6;
un~signed int read..ready:l)
unsigned mnt write..ready:l;

/e Implem.entation of fputol) as described in the Ihniware Compiler wtmm.
For the NSCSOO controllers there is only one valid output device, naely
the RS232C terminal. The variable "device" is therefore ignored.
This moduale must be place in unailiblibc.s using the ,.mr.exe utility. 0

int fputo(int chr, void *device)

199

struct rsZ3Zc portdatas
char part-status;

/* Allow the user to interrupt the display of data by use of control

characters. */
allowctrlinterrupts();

/* The UNKARE manual specifies that this function must return -1
if it cannot output a character. If there is no terminel attached,
this is the case. 5/

if (!checkprt()
return(-l)i

do C
/* Keep getting the status information for the RS232C data port

until it is ready to accept data. /

port-statuszinput(PRTCTRL);
portdata -*mstruct rs232c *) &port-statuss

) while (!portdata.writeready)i
/* Otherwise, output the character and return it. 5/

output(PRTOATA,!char) chr)
returnt chr I

R. FILENAME GLOBAL.H

/* This file contains external prototyping declarations of data used globally
throughout the control program. 5/

extern char prtconnected;
extern char tempbuffer[PAGELENGTHJ]

extern struct datetime clocki

extern struct idatetime waketime
extern struct powerport-fmt powerportj

extern char adport[ADPOINTS];
extern char pageObuffqr(PAGELENGTHJ;

extern char logbufferPAGELENGTH];
extern struct page0data *pagezeros
extern struct fulllog-page *logpage;

extern char *adcaption[;

S. FILENAME GLOBAL.C

/* global.c */
/* This file contains the declarations of global variables needed by

the control program. 5/

*include "vibro.h"

char prtcoreoted; /* TRUE if there is a terminal attached, FALSE
otherwise. */

char tempbufffertPAGELENGTH]) /* A temporary buffer. 5/

struct datetime clock) /5 The most recently read time will be

200

stored here. /

struct idatetime waketimes /* The most recently read integer version of
time will be stored here. 5/

struct powerport_fmt powerjport;

/* This is a list of A/D ch nnels in use, and what they're used for.
Make sure ADPOINTS z the nu.mber of transducers in use. */

char adport[APOINTS] a C

VOLTO, VOLTI, VOLT2,

TEMPO, TEMPi, TEMP2, TEMP3, TEMP4, TEMPSP TEMP6

char pageO_buffer[PAGELENGTHII /* A buffer for bubble memory page 0. /

char log..buffer[PAGELENGTH]h /* A buffer for bubble memory log data. /

struct pageOdata *pagezerol /* A pointer to the pageO-buffer. 5/

struct full-log-page *log page; /* A pointer to the log-buffer. */

/* The following captions should match the A/D port assignments,
in order. See the vibro.h header file.*/

char *adcaptiont I :
"+ZOV Bus,
"-20V Bus",
"+1OV Bus",

"T, shelf above BMC,

"T, underside of speaker",
"T, shelf above batteries",

"T, batteries",
"T, controller backplane",

"T, card 8 of BMC",
"T, card 9 of BfC"

T. FILENAME INITIAL.H

/* This file contains external prototyping decalarations for all functions
in "initial.c". */

extern void initherdware(void) i

U. FILENAME INITIAL.C

/* initial.c /

*include "vibro.h"
*include "inout.h"

#include "newio.h"

void initherdware(void);

201

/* This routine initializes the NSCS1OA ports. /

void inithardware(void)

output(lMDRl,OxOO) /* A OxOO in the Hod. Definition Register
of NSCSlO 01 puts port Al into basic 1/O
mode. */

outputIDDRAl,Oxff~j /e Set port Al to output.
Al is used to output camand codes to
the SSDR. */

outputDORBiOxff)t /* Set port 51 to output.
S1 is used to send commnd codes to the
power subsys ter. */

output(DORCl,0x30)s /* Set port Cl to input/output.

Bits are defined in vibro.h s/
output(THOlOxOO) /* Stop timer 0 of NSC8IOA #1. You must do this

before changing the timer's mode. */
output(TMOl,0x25)i /* Set timer mode to generate square waves

without pre-scaling, and with single-
precision selected, meaning only the low-
order byte is ever read. */

outputfTOLBl,0xO7); /* Set low-order and high-order byte for timer. 5/

outputlTOHBl,0xOO)l /* The modulus is thus 7. After 2*17+1)

cycles, the timer is reloaded. Since the
NSC800 clock has a frequency of 4.9152 Mhz,
and this is divided by 2, the timer produces
one pulse every 6.51 mus, for a 153.6 KHz

signal. This signal is fed to the UART where

it is divided by 16 to give a 9600 BAUD clock
for serial communications. 5/

outputlSTARTOl,0xO0) /* Restart timer 0 of NSCS1OA #1 by writing

anything to it. */

output(MDRZOxO0) /* A OxO0 in the Mode Definition Register

of NSCSlO #2 puts port AZ into basic 1/o
mode. 5/

output(ODRA2,OxO0)i /* Set port AZ to input.
A2 is used to read status codes from the
SSOR. */

outputlODRBZ,OxOO)l /* Set port B2 to input.
B2 Is used to read relay position codes

from the power subsystem. */
output(DDRC2,Ox31)) /* Set port C2 to input/output.

Bits are defined in vibro.h*/
utput(TMO2,0x00); /* Stop timer 0 of NSCS1OA #2. You must do this

before changing the timer's mode. */
output(ThO2,Ox)S i /5 Set timer mode to generete square waves

without pre-scaling, and with single-
precision selected, meaning only the low-
order byte is ever read. */

outputTOLBZOxOl)j /5 Set low-order and high-order byte for timer. 5/

outputlTOHB2POxOO)s /* The modulus is thus I decimal. After 2*4111)
cycles, the timer is reloaded. Since the
NSCSOO clock hes a frequency of 4.9152 Mhlw
and this is divided by 2, the timer produces

one pulse every 1.628 mUs, for a 614.4 KHz
signal. This signal is fed to the A/O

converters. For a 640 KHz clock, the A/OS

202

will complete a conersion in about 100 mus.
He are not far from 640 KHz, so should got
comparable performance. */

output(STARTOZ,OxO0) /* Restart timer 0 of NSC81OA #2 by writing
anything to it. */

outputlBCLRCZ,Ox30)j /* Ensure that power is not applied to the
bubble memory and that a reset is applied to
it. This should be done when the NSC810 first

receives power, but we leave nothing for
granted. 5/

V. FILENAME INOUT.H

/* This file contains external prototyping declarations for all functions
in "inout.c". */

extern void allow-ctrl-interruptsivoid)s

extern void dump(unsigned int address, unsigned int length)j
extern char gethex(void))

extern unsigned int gethexint(void);
extern int getintivoid)s

extern int getpagenolvoid)s
extern char look-ahead(char *character);

extern char look-ahead-discard(void)t
extern void portdu.mp(char *string)
extern char tarmin(void))

extern void testinput!void))

extern void testoutputlvoid))

W. FILENAME INOLUT.C

/* inout.c */

#include "vibro.h"
#include "convert. h"

*include "newio.h"
#include "bubble.h"
*include "expmt. h"
*include "global.h"
linclude "main.h"

void allowctrl_interrupts! void)
void dump(unsigned int address, unsigned int length)
char gethex(void))
unsigned int gethexintivoid);
int getint(void)l
int getpagenolvoid)j
char look-aheadlchar *character);
char look-ahead-discardl void)i
char terminivoid)i
void testinput!void);

void testoutput!void);

203

/* consolebuffer is shared by lookahead() and termin(. If look_ahead(I
reads a character in, it puts it in the buffer and sets the
console-data-available flag to true.
termin!I will look first in the buffer for
input from the console. If it finds any, it will set consoledata to false
and return the character in the buffer. Otherwise it will try to get a
character from the console in the usual way. 0/

static char console-buffer;
static char consoledate_available a FALSEs

/* This routine processes the special characters CTRL S and CTRL Y from
the keyboard. */

void allow_ctrlinterrupts(void)
C

char conchar; /* The character of console input data itself. 0/
char char-availables /* TRUE if there is a character available for

input from the console; FALSE otherwise. 0/

/* If there is a S character in the RSZ32C input port, then read it
in using termini) and loop until another S is given. Thus, S
serves as a toggle for stopping and starting output. 0/

/* See if there is a character available,

and if so, put it in conchar.*/
char-available = look-aheadf&conchar);

if (char-available) (
switch(concharl (

case CTRLS:
case CTRLY:

/* Call termin!) to empty the buffer and handle the
control character. */

termin)
breaki

default:

breakt
)

)

/* This routine produces a hexadecimal dump of any section of memory. 0/

void dumpiunsigred int address, unsigned int length)

unsigned int i; /* Points to the current byte being dumped. 0/

char ascii[DUMPIDTH+13) /0 Contains the ASCII equivalent of each byte. 0/

ascii[DLHPINDTHI a NULL; /0 Make sure ascii has a null delimiter
to look like a C string. 0/

/* Convert length to a multiple of DUHIPIIDTH. */
length a ((length * DUMPHIDTH-l)/DUMPHIDTH) * DMIPHIOTH
for (i=O)i<length;il+) {

if (O=ziDLNPHIDTH) C /0 Dump the ascii version and start a
new line every DUHPHIDTH characters. 0/

204

if i > 0){

printfl "Ys n r",ascii);
)

/* Also, dump the current address. */
printf("Ys: ",uitoh(address+i));

*)

/* Put extra spaces in the middle of emach line. */
if IO:=iY(DU"PHLIDTH/2) S& 0 !a iXDUMPHIDTH) C

printf(" ");
)

printf("Xs ",ctohl(char *) (addressi))); /* Dump each byte individually. /

/* Insert the current character in the string "ascii".*/

/* If it's not printable, replace it. /

ascii[i.DUMPHIDTH] = *Ichar *) (address~i);

if IasciiiZDLIMPHIDTH] < SPACE II ascii[iXDU"PHIDTH3 >= DELETE) C

ascii[iXDUMPNIDTH] =
3

3

/* Make sure ascii is printed again at the end of the last line. */

if i > 0) C

printf("s n r",ascii);
3

/* This routine gets a hexadecimal byte from the terminal.*/
/5*** s******s**************g*ssssssssss********ss** ss***--******/

char gethex(void)
C

int is

char stringtHSTRLEN + 11;

string[HSTRLEN] = NULL;

for (i=O;i < HSTRLEN;*+i) C

string(i] = toloweritermint);

if (string(i] == BS) {

i - 2s

if (i < -1) C

i -1;

else

printf("b b"))

continues

print f(!"7€" Pstring[i))

if (stringoil >a 'a' AS stringil <a f')

continues
if (stringlil >a '0' &A stringlil c- 19')

continues

string[i I NULL;

breaks

returni atohi string))l

205

In This routine gets a hexadecimal word (two bytes) from the terminal.*/

unsigned int gethexint(void)
C

int is
char string(EXNTSTRLEN4l Is

stringHEXl4TSTRLENJ z t&ILLs
for (icsi < IEXINTSTRLEts4si) C

stringti a toloweri teruin()s
if Istringlil anS) C

i -a 2s
if (i < -1)C

IelseC
printf("b b");

continues

printf("Xc" ,string ii)s
if (stringlil >= a' 3& stringliI <='l

continue;

if Estring~i] >= 10 88 stringtil <= *9)
cant inues

string! il = NULLs

breaks

returnS atohexinti string) Is

/* Get an integer from t9'.~ terminal. *
int getintivoid)
C

int is
char stringCSTRLEN~i

string[STRLEN] = NULLs
for Ii=Osi < STRLENs..i) C

string!i zi terminl 3
if (stringlil -BS) (

i -s 2;
if (i C-1)C

3 elseC
prlntfl"\b b"Is

continues

ps-intO "X",stringl il)s
if Istr'nglI < 10' 11 stringlil > '9'S)

string! il z *~
breaks

206

return(atoit string));

int getpageno(void)

int page;

char s[STRLEN]; /* Storage for itoa(). */
itoa(MAXPAGE,s);
printf("Input the buble memory page number 1O-Zs decimal): ",s);
while (TRUE) C

page a gtint()

printf(" n r')s
if (page >a 0 && page c= MAXPAGE)

break;
itoa(IAXPAGE,s)i
printf("Page must be in the range 1O-%s decimal): ",s))

)

return(page);
)

/* This function checks to see if a character is available through termini).

It places the character, if any, in the location pointed to by
'character'. It returns TRUE if there was a character, FALSE otherwise. */

char look-ahead(char *character)

/* If there is no terminal attached, return FALSE. */

if I!checkprt(U
return(FALSE);

a)

/* If the buffer is already full, return it's contents,

but don't empty it. */
if (consoledataavailable) C

*character = console.buffert

return(TRUE);
)

/* Check the RS232C port to see if there is data available.
Bit 1 will be 1 when data is present. */

if (input(PRTCTRL) A PRTRDY) C
/* If there is data, store it in the buffer and let termin) know

about it by setting the console_dataavailable flag. */
*character = console-buffer a input(PRTDATA);

return(consoleodata-available a TRUE);

)

return(FALSE); /* No data was present. *1

/* This routine checks to see if a character has been entered from the
keyboard. If so, it discards the character and returns TRUE. If not,
it returns FALSE. */

char lookaheaddiscardi void)

if (lookahead((char *) NULL)) (

207

termin!)s
return(TRUE))

else
returni FALSE) i

/* This function obtains a character from the keyboard. a/
char termin(void)

static char allowmenucall = TRUE)

/* Iallcwmenu call' is true if menu!) can be called from termin!),

FALSE otherwise. It can be called from termino) once; subsequently,
it must first return control to termin 3. Thus, one recursive entry
into menuo) is permitted at a time. The experiment can be monitored,

but only at one subordinate calling level and no more. /

char waiting-for-ctls;

/* This variable is true if an odd number of CTRL-S characters has

been accepted. No characters can be accepted from the keyboard

until an even number of them have been received. However, CTRL-Y can

be accepted, in which case menu(w will be called at once. */

char ctrl_validdatas /* This is TRUE if look-aheado) already filled
the buffer; FALSE otherwise. 5/

waiting-forctls = FALSE)

ctrlvald_data consoledataavailablei

/* Loop continuously until an acceptable character has been received. 5/

while (TRUE) (

/* If the buffer is empty, then wait for a character to be entered.

It could have been filled by lookahead().*/

if (!consoledata-available) {

while (TRUE) (

/* Check the RSZ32C port to see if there is data available.

Bit 1 will be 1 when data is present. Hait for data. 5/

if (input(PRTCTRL) & PRTRDY) (
console-buffer = input(PRTDATAJ)

break
3

/* Now that console data has been read, set the availability flag

FALSE so that if it becmes necessary to read another character,

you can do so. */

console-dataavilable * FALSE)

switch (consolbuffer) C

case (CTRLS):

/5 Toggle the waitingfortls flag. As long as this flag

is true, you can't get out of termini. 5/

waitingfor-ctls a !waiting-for-ctls)

if ((!waitingforctls) i& ctrlvalidcdata)
return! consolebuf for))

break)

208

case (CTRLY):

/* You can execute a CTRL-Y even if a CTRL-S is pending.

The effect is to cancel the CTRL-S. C/

waiting-for-ctls = FALSE;

if (allow_mnenu.call) C
allow-menu-call a FALSE;
/* Tell menvu(not to start the experiment. This is

only permissible when main() is the calling function. */

menu(!EXPERIMENTOK);

allow-jnenu call = TRUE)
3

if (ctrl_valid_data)

return(consolebur ffr);
break;

default:
/* Ignore this character if you're waiting for a second CTRL-S. /

if (waitingforctls) C

break;

)return) console-buffer);

3

/* This function allows the user to read data from any port. */

void testinputivoid)
{

Sint port; /* Port number to be entered from the keyboard.*/

char data; /* Data to be read from that port. */

printfi"Specify port address to be read (in hexadecimal): ")

port = gethex()) /* Get the port address. C/

printf(" n r" 1;

data = input(port)) /* Read from the port. */

printf("Data from port tin hexadecimal): Xs n r",ctohl data));

/* This routine outputs a character to a specified port. C/

void testoutputf void)
{

int port) /* The port address. Cl

char data; /* The data to be sent to the port. /

printf("Specify port address to be written to (in hexadecimal): ');

port a gethext); /* Get the port address. C/

printf(" n r")
printf("Specify the data to be sent to the port (in hexadecimal): ");

data 2 gethext);

output port ,data);

209

X. FILENANIE MAIN.H

/* This file contains external prototyping declarations for all functions

in "gmain.c". /

exter void memory-dump(void);
extern char menu(char experiment-flog);
extern void program(void);
extern void testio(void))

extern void main(void))

Y. FILENAME MAIN.C

/* main.c /

*include "version.h"
#include "vibro.h"

#include "bubble.h"

#include "inout.h"

#include "power.h"
#include "convert.h"

#include "initial.h"

#include "clock.h"
#include "newio.h"
#include "global.h"
#include "expmnt.h"

void memory.dum(void))
char menuichar experiment-flag);
void testiolvoid 3)

void main(void);

/* This routine lets the user produce memory dumps for any section of memory.*/

void memorydump(void)
(

unsigned ant address; /* Hill hold the starting address of the dump.*/
unsigned ant length) /* Hill hold the number of bytes to dump.*/

while (TRUE) (

printf("Please specify address: ")s

address = gethexint3)
printfl"nrPlease specify rxser of bytes to dump (0 to quit): ")i

length z gethexintoi)

printf(" n r")
ifllength -2 0)

break)
dump address, length))

/* This routine is the highest level of all the diagnostic menus.
It will not permit the experiment to be run unless the experimentflag
is TRUE. /

char menuE char experiment-flag)
2

210

char data; /* A character read from the keyboard. 5/

ant i; /* A counter. */
char addata; /* A value read from the A/) converter. 5/

ant values /* The A/D reading converter to useful units. 5/

while(TRUE) C
version|)
printf("(,

A Software reset. nr\
B Realtime clock functions. -n r\
C Power relay switching functions.\n,,r\
0 Bubble memory test functions. nr
E A/D converter furnctions. nr,
F Run experiment. n r\
G Perform port 1/O. n-r\
H Display contents of controller memory. nr\
I Examine or change the data logged in the bubble memory. n r
Z Exit this menu. nr");

/* Read in a character from the keyboard, convert it to lower case,
and display it. */

data z tolower(termini]);
printf ("Zc n r',data);
switch (data) (

case a,: /* To perform a software reset, jump
to address 0. 5/

asm(" jp 0" 3;
break;

case 'b': /* Call the real time clock functions. */

rtcl);
break;

case 'cl:
pwrcnto 3; /5 Call the power control functions. 5/

break;
case 'd':

bubmenu(; /* Call the bubble memory testing
functions. 5/

break;
case e: /* Display the A/D data. 5/

for (i=0;i < ADPOINTS;++i) C
addeta a adreadfadport[il);
printf | "X-24X3. 0d=" ,adcaption i ,addata 1)

/* If i <z 2, then the A/D reading is a voltage. 5/

if (i <a 2) C
value w adtoint(addats,(iZ)?ULT-lOV : ?ULT20V);
printfi"7c;2.Od.YO2.0.dV ,(i1)?-:*,

value/100 valualOO);

/5 Otherwise, the A/f reading is a temerature. 5/

else C
value z adtoint!addataLTTEMP);
printfi "X6.OdK ",value);

211

/* Print two points per line. */

if ((0 !x i . 2) j i sr ADPOINTS - 1)

printf(" nr")

break;
case If: /* Execute the experiment, unless it

is currently in a suspended state. 5/

if (experimentflag) C
expmnt();

) else C
printf! "You cannot run the experiment functions while

execution is suspended with \Y.,nrExit this menu and try again. nr");
)

break;
case 'g': /* Enter the routine which reads from and

writes to any port. 5/

testio(Is

breaks

case 'h':
memorydump(1) /* Enter the routine which displays the

contents of selected portions of

memory. 5/

breaks

case i:

log-menu(); /* Enter the routine which permits the
contents of the bubble memory log to

be modified../
breaks

case Iz':
return;

default:

printf("Use a valid letter please! n r");

/* This routine allows you to output data manually to any port, or to read

data from any port. 5/

void testio(void)
C

char date /* A character entered from the keyboard. 5/

/* Repetitively display the following menu until choice Z is made. 5/

while (TRUE) C

printf!

"nrlenual port 1/O fwctions. Pick one! n~r ,

A Znput. nr
B Output.'n r
Z Return to previous menu. nr");

/* Read a character from the keyboard, convert it to lower case,

and display it. */

data z tolower(termin(j33
printf ("Xc n r" ,data);

switchldata) C

212

Case 'a: /* Enter the function which allows the
user to read data from a port. 5/

testinput(1;

breaks
case 'b': /* Enter the function which allows the

user to write data to any port. 5/

testoutputl)1

break;

case 'z': /* Quit. s/
return;

default:

printf("Use a valid letter please. n.r"3)

break;

)

/* The C program begins here. This routine gets control from the assembly

language program which resides at address 0. */

void main(void)
(

/* Make sure that each of these pointers is intialized to point to the

same memory as the corresponding buffer. Thus the same data can be
accessed either as a list of characters (a buffer) or as a structure

(if the contents need to be accessed individually.) 5/

pagezero (struct pageOdata *) pageO-buffert

logpage (struct full-logpage *) log-buffer;

/* Initialize the system ports. 5/

inithardware();

/* See if there is a terminal attached. If so, turn off any subsystems

which are currently on and enter the menu diagnostic system. 5/

if (prtconnected = checprto) (

shut-down-no.log()

while (TRUE) (

menu(EXPERIMENTOK);

/* If there is no terminal attached, we must be in space, so run the

experiment. 5/

) else

expentU) /* Run the experiment../

Z. FILENAME MBRK.S

obrk.s

a mbrk() function for use with mallo(o) and calloct) .

t File "spec" declares a single section of RAM, MRAMSZ bytes long,

I to use for memory allocation, and START in file "start.asm"

initializes MBRKPTR to point to that memory.

213

global obrk ,MSRKPTRoRAMSZ
option longz4 ; assume longz4 bytes

region code
mbrk: push ix ; char *mbrk(long size, long *realsize)j

Id ix,O
add ixsp ; (ix+4,5,6,7):size, (ix*8,99:realsize
ld dep(BRKPTR) ; return value is address of mmory section
Id a,d
or e
Jr zout t zero means memory section is in use
Id a,(ix 6)
or (ix 7)
jr rz,out 1 nonzero means more than 64K requested
ld c,(ix+4) i requested 'size' to bc
ld b,(ixS)
ld hlMRASZ check if 'size' bytes are available

assumes MRAMSZ is less than 64K

or a clear the carry flag.

sbc hl,bc
jr c,out
ld bc,O ; mark memory section as used
Id (MBRKPTR),bc de still holds former MSRKPTR
ld 1,(ix+8) I get the pointer to Irealsize'
ld h,(ix+9)
ld (hl),lo MRAMSZ write back actual size of memory section

inc hi
ld Ihl),hi MRAMSZ
inc hl

ld (hl),O

inc hl
Id (hl),O
jr ret de is the return value

out: ld de,O out of memory, return zero pointer

ret: Id sp,ix
pop ix
ret

AA. FILENAME NEWIO.H

extern char input(char port)l
extern void outputlchar port,char deta)s

AB. FILENAME NEWIO.S

I newio.s

export input, output

region oode

char input(char port)l
input:

push ix There are no local variables.

ld lxO

214

add ix,sp
Id cI ix+4) ;Put port address in register c.

in 0,(c) Get the data from the port.

pop ix iRestore ix to the value it had before this

ifunction was called.

ret

I void output (char port, char data)i
output:

push ix
Id ixO)There are no local variables.
add ixsp

Id et ix+4) ;Put port address in register c.
Id aIix+6) sPut data in register a.
out (c),a Irite the data to the port.
pop ix ;Restore ix to the value it had before this

sfunction was called.

ret

AC. FILENAME POWER.H

/* This file contains external prototyping declarations for all functions
in "power.c". */

extern char power-statuslvoid)I
extern char power-write(char command);

extern void pwrcnt(voidis

AD. FILENAME POWER.C

/* power.c -/

#include "vibro.h"
#include "bubble.h"

#include "convert.h"
#include "inout .h"
#include "delay.h"

#include "expmnt. h"
#include "newio.h"

*include "global.h"

char powerstatus(void);

char powerwrite(char coemnd);
void pwrcnt(void);

/* This routine gets the status from the power boerd. 0/

char powerstatus(void)
C

return(inputI PONERIN) 3;

215

/* This routine sends commands to the power board. */

char powerwritelchar command)
(

int l)
char status$
char oncommands /* TRUE if command is an ON command,

FALSE otherwise. */

char releyon; /* TRUE if the indicated relay is on,
FALSE otherwise. */

/* Try to send the command to the power board.

Return TRUE if successful. Return FALSE after you give up

in disgust. */

for izOi<TRESsi++) C

output I POEROUT ,commawd);

outputI BSETC1 ,PHRSTROSE)

delayl PHRDELAY)

output I BCLRC1 ,PNRSTROBE)

delay(PNRDELAY)$ /* Wait PHROELAY x 10 ms for the

relays to respond. */

/* The command is intended to turn a relay on only if the

last bit is set (1). */

oncommand = ONSIT & command;
status = NOPO$ER I powerstatusl);
/* To see whether the indicated relay is on,

see whether only the status bit in the

relay's assigned bit position is a zero. If it is, then

that relay is on. */

relayon : status & command;

/* If the relay's position matches that commanded, then

log a successful setting of the relay. */

if ((oncommand && relayon) 11 1!oncommand && !relayon)) C

returni TRUE)

printf!"Trying again to switch relays. nr");
)

/* If you got this far, then the relay's position did not match

that commanded, so log a failure. 5/

return(FALSE)i

/* This routine sends commands to the power boerd. 5/

void pwrcntlvoid)

char datai /* Oate from the keyboard. 5/

static int relay(] a C

SSORON, SSOROFF, VCOON, VCOOFF, ADON, ADOFF,

MATFON, MATFOFF, HEATON, HEATOFF

whilelTRUE) C

216

printf(" n rPOWER SNITCH CONTROL.knr n r\
A 9 SSDR on. n r,
B a SSOR off. n r

C a YCO on. nr
D a VCO off. n r,
E z A/D on. nkr\
F a A/D off. n r.

G a MATCHED FILTER on. n r
H a MATCHED FILTER off.wnr\

I a HEATER cn.\nr\
J a HEATER off.,n rk
K a READ power status port.\,nr

Z a Back to the MAIN MENU.\nr"))

data a tolower(termin(ii

printf("7c n r",data J)

if Idata >= 'a' && data <z Ij'

if(!powerrite(relay[data-'a'))
printff "Power control command failed. n r");

) else (

switch (data) {

case k:

printf("s n r" ,ctoh(power_statusl))

break;

case 'Z':

return)

default:

printf("Use a valid letter, please. n r");
break$

AE. FILENAME START.S

; February 19j 1988 start.s

This startup code initializes interrupt vectors and runs START at

; reset

to initialize RAM and call the user function maint).
The companion link specification file is "spec" which defines

Imany of the imported symbols. Also see file "brk.asm" for the
o ebrkt) function if you want to use malloct) or calloci).

I The program Is adapted from an example given in the UNIARE
manual, Compiler section, pp. 13-15.

export STARTMBRKPTR

import main ,STACiTOP ,RAMOATA ZRAiI ,ZRAMSZ, IRAN, IRAISZ MRAH

217

I Define a variable to track memory allocations in mbrko .

region ram

MBRKPTR ds 2 I Ichar *) to available memory

-------------- ***** ---
Reset code must be linked to address 0.

region reset

ld sp, 10 STACKTOP I initial stack pointer (OxlO000 as 0)

jp START I initial execution address

org Ox08

ARESTART: ;RESTART LOCATION I

ip START

org OxlO

BRESTART: ;RESTART LOCATION 2

ip START

org Oxi8

CRESTART: RESTART LOCATION 3

jp START

org Ox2O

DRESTART: sRESTART LOCATION 4

jp START

org 0x28

ERESTART: RESTART LOCATION 5

jp START

org Ox2C

FRESTART: sRESTART LOCATION C

jp START

org Dx30

GRESTART: ;RESTART LOCATION 6

jp START

org Ox34

HRESTART: ;RESTART LOCATION B

ip START

org 0x38

IRESTART: ;RESTART LOCATION 7

jp START

org Ox3C

JRESTART: sRESTART LOCATION A

jp START

org 0x66

NONMASKI: NON-NASKABLE INTERRUPT

jp START

I This code can be anywheres the reset code jumps to it.

region code
START: ld ixO) end of stack frame chain

ld hlN *RAN initialize memory allocator

1d (MBRKPTR),hl

Zero out uninitialized RAM.

218

It is assumed here that ZRAtSZ > 1 but this is guaranteed

a as long as MBRKPTR (above) is defined in region ram.

ld hlZRAM s zero ZRAMSZ bytes here
ld (hl),O ; zero first byte
Id deZRA II 1 repeatedly zero other bytes
Id bcZRAMSZ-1
ldir

Initialize other RAM from ROM.

Id hl,RAMDATA

Id de,IRAM
ld bcpIRAMSZ
ld apb
or C
jr z none

idir
none:

Invoke main() with no arguments.

call main any return value is "int" in de
done: halt halt if main returns

To vector an interrupt to a C function, you must go though
a register save routine like the one shown here.

I If the "-r exx" option is being given to the conand line,
then registers bc' de' and hi' need not be saved and restored
since the compiler will make no use of them. The compiler
does not use af' in any case.

region code

;INTERRUPT
push af save registers

push bc
push de
push hl
push ix
push iy
exx

push bc
push de
push hl

; ex
call cfcn ; call some C function
Oxx
pop hl) restore registers

pop de
pop bo
e cxx
pop iy
pop ix
pop hl

219

I pop eI POP bc
I POP af

ei

I ret return from interrupt

AF. FILENAME ASMI.BAT

arem Make asmsource the current subdirectory

cd vibro contrlr asmsource

Qre. Assemble the specified source file

uasz8O -a 80 -n -t 4 -L Zl

;rem Place the object module in the object subdirectory

copy *.o vibro contrlrobject

erase *.o

;rem Place the assembly listing in the list subdirectory.

copy *.lst vibro contrlr list

erase *.lst

AG. FILENAIE ASMLIST.BAT

;rem Fill in the symbols of the specified assembly listing file

arem with the valses given in the executable module u.out.

Qrem Pipe the completed listing to the ulist program to give a

@rem decent looking print-out.

uabs vibrocontrlru.out < vibrocontrlr list X1 I ulist >> tempprint

AH. FILENAME C.BAT

;rem Make csource the current subdirectory.

cd vibro contrlr csource
Zrem Compile the source file.

ucczSO -e -1 -A -L -- X.

arem Place the resultant object module in the object subdirectory.

copy 0.o lvibro'contrlr object

erase *.o
are. Place the resultant assembly listing in the list subdirectory.

copy .lst vibro conrlr,list

erase *.1st

220

Al. FILENAME LINK.BAT

Q rm Make object the current subdirectory.

cd vibro contrlr object
arem Link the specified object modules together.
ule -f spec -t -v X1 X2 X3 74 I 76 Y7 YS .9
arem Place the linked maodule in the contrlr subdirectory as u.out.
copy *.out vibrocontrlr
erase *.cut
arem Create an executable module in the contrlr subdirectory as u.bin.
cd vibro contrlr
ufihx u.out > vibro.hex

AJ. FILENAME LIST.BAT

Drem Produce a paginated listing of the specified file, and
arem put it in a temporary, scratch file called tamp print.

ulist -d -t 4 -x -0 hdr:Xl Xl >> temp print

AK. FILENAME LOADMAP.BAT

;rem Create a load map of all the regions in u.out.

unt -m vibro contrlr u.ouA > tamp temp
Zrem Produce a paginated print-out of it.

ulist -d -0 hdr=loadmap tamp tamp >> tamp print

AL. FILENAME PRINTALL.BAT

;rem Produce a complete listing of the load map, symbol table and
Qrem all source files, and header files.

cd vibro contrlr

call readyout

call loadmap

call promsym?
call o
call list spec

call h
call list version.h
call cs
call list version.c
call h

call list vibro.h
call list bubble.h

call cs
call list bubble.c

call h
call list bubr..h
call S

call list bubr.s
call h

call list clock.h

221

call cs
call list clock.c
call h
call list convart.h
call cs

call list corwert.o
call h
call list delay.h
call s

call list delay.s
call h

call list expmt.h

call cs
call list expunt.c
call h

call list global.h
call cs
call list global.c

call h
call list initial.h

call cs
call list initial.c

call h

call list inout.h
call cs

call list inout.c
call h

call list main.h
call cs

call list main.c
call s
call list mbrk.s

call h
call list newio.h

call s
call list newio.s
call h

call list power.h

call cs
call list power.c
call list s.bat

call list start.s
call b

call list asm.bat
call list asmlist.bet

call list b.bat
call list backupl.bat

call list backup2.bat
call list =.bat
call list cs.bat
call list link.bat
call list list.bat
call list loadmap.bot

call list o.bat

call list printall.bat

call list promlib.bot
call list promlink.bat

222

call list promsymbat
call list readyutbat

AM. FILENAME PROMLINK.BAT

cd 'vibro contrlr object
link -F linkfile lib.a

AN. FILENAME PROMOUT.BAT

arem Put the print scratch file into the printer queue.
copy vibro contrlr batch,lpfont+,temp print+ vibro contrlr batch normfont temp print2
print 'temp print2

AO. FILENAME PROMSYM.BAT

Qrem Put the symbol from u.out into a scratch file.

unto -fnrstv~gx vibrocontrlru.out > temp temp
Qrem Produce a paginated version of the symbol table listing.
ulist -d -0 hdr=symbols temp temp >> temp print

AP. FILENAME READYOUT.BAT

Qr*m Get rid of the two scratch files used in producing listings.

erase temp temp
erase temp print
erase temp print2

223

APPENDIX 1. RS-232C INTERFACE PIN CONNECTIONS

This appendix contains the complete electrical specification for the RS-232C Inter-

face. It is provided here for convenience. Only a subset of this specification has been

implemented in the Vibro-acoustic Experiment for the purpose of providing communi-

cations between the controller and the terminal, which is useful during ground testing.

Table 16. RS-232C INTERFACE PIN CONNECTIONS

Circuit Nine-
Pin nionic

Number Desig- Desig- Direction Description
nation nation

I AA FG FRAME GROUND. This lead is
an electircal equipment frame and
power ground.

2 BA TD To DCE TRANSMITTED DATA. 'Fhis
lead carries the serial digital data
transmitted from the DTE to the
DCE.

3 BB RD To DFE RECEIVED DATA. This lead
carries the serial digital data re-
ceived at the DTE.

4 CA RTS To DCE REQUEST TO SEND. An "ON"
condition on this lead is used to
enable the local DCE for data tran-
smission.

CB CTS To DTE CLEAR TO SEND. An "ON"
condition on this lead indicates
whether or not the DCE is ready to
transmit data.

6 CC DSR To DTE DATA SET READY. An "ON"
condition on this lead indicates that
the local DCE is ready to process
data and is not in a test, talk, or dial
mode.

Source: Couch, L. W., Digital and Analog Communication Systems, Macmillan Pub-
lishing Company, 1987, pp. 684-686

224

Table 17. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED)

Circuit Nine-
Pin Desig- monic Direction DescriptionNumber nation Desig-

nation

7 AB SG SIGNAL GROUND. This lead es-
tablishes the common ground refer-
ence potential for all circuits except
frame ground on pin 1.

8 CF DCD To DTE DATA CARRIER DETECT (Re-
ceived Line Signal Detector). This
lead indicates that data from the
remote location is beine received
and meets a suitable criterion es-
tablished by the DCE manufac-
turer.

9 To DTE Positive DC Test Voltage

It) To DTE Necative DC Test Voltage
I1 Bell QY, I To DTE EQUALIZER MODE. This lead is

2SA used to indicate to the DTE that the
type cir- adaptive equalizer in the receiver is

cuit reset automatically when error per-
formance is poor. (non-EIA desig-
nated).

12 SCF (S)DCE To DTE SECONDARY DATA CARRIER
DETECT. This lead is equivalent
to DCD on pin 8 except that it in-
dicates the proper reception of the
secondary channel line signal in-
stead of the primary channel re-
ceived line signal.

13 SCB (S)CTS To DTE SECONDARY CLEAR TO SEND.
This lead is equivalent to CTS on
pin 5 except that it indicates the
availability of the secondary chan-
nel instead of indicating the avail-
ability of the primary channel to
transmit data.

Source: Couch. L. W., Digital and Analog Communication Systems, Macmillan Pub-
lishing Company, 1987, pp. 684-686

225

Table 18. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED)

Nine-
pin Circuit monic

Number Desig- Desig- Direction Description
nation nation

14 SBA (S)TD To DCE SECONDARY TRANSMITTED
DATA. This lead is equivalent to
TD on pin 2 except that it is used
to transmit data via the secondary
channel.

Bell NS To DCE NEW SYNC. This lead may be
208A used on an optional basis with the

type cir- DCE at a master station of a mul-
cuit tistation private line network, such

as in a polling operation. to ensure
rapid resynchronization of the re-
ceiver on data from many different
remote transmitters (non-EIA des-

_________ ________ _________ ignated).

15 DB TC To DTE TRANSM, IITTER CLOCK. This
lead is used to provide the DTE
with signal element timing informa-
tion.

16 SBB (S)RD To DTE SECONDARY RECEIVED
DATA. This lead is equivalent to
RD on pin 3 except that it is used
to receive data on the secondary
channel.

Bell DCT To DTE DIVIDED CLOCK. TRAL\NS.MIT-
208A TER. A square-wave signal at

type cir- one-third the nominal bit rate ap-
cuit pears on this lead whenever power

is supplied to the DCE (non-EIA
designated.).

Source: Couch, L. W., Digital and Analog Communication Systems, Macmillan Pub-
lishing Company, 1987, pp. 684-686

226

Table 19. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED)

NIne-
Circuit monic

Number Desig- Desig- Direction Description
nation nation

17 DD RC To DTE RECEIVER CLOCK. This lead is
used to provide the DTE with re-
ceived signal element timng infor-
mation.

18 Bell DCR To DTE DIVIDED CLOCK, RECEIVER.
208A A square-wave signal on this lead

type cir- provides the receiver timing infor-
cuit mation at one-third the nominal bit

rate (non-EIA designated).
19 SCA (S)RTS To DCE SECONDARY REQUEST TO

SEND. This lead is equivalent to
RTS on pin 4 except that it requests
to use the secondary channel in-
stead of the primary data channel.

20 CD DTR To DCE DATA TERMINAL READY. An
"ON" condition on this lead indi-
cates that the DTE is ready to be
connected to the conununication
channel.

21 CG SQ To DTE SIGNAL QUALITY DETECT.
This lead is used to indicate whether
or not there is a high probability of
an error in the received data.

Source: Couch. L. W.. Digital and Analog Commnunication Systems, Macmillan Pub-
lishing Company, 19S7, pp. 6S4-686

227

Table 20. RS-232C INTERFACE PIN CONNECTIONS (CONTINUED)

Circuit Mne-
Number Desig- monic Direction DescriptionNubr nation Desig-

nation

22 CE RI To DTE RING INDICATOR. An "ON"
condition on this lead indicates that
a ringing signal is being received on
the communication channel.

23 CH To DCE DATA RATE SELECTOR. This
lead is used to select between the
two data signalling rates in the case
of dual rate DCE.

CI To DTE DATA RATE SELECTOR. This
lead is used to select between the
two data signalling rates in the case
of dual rate DCE.

24 DA TC To DCE EXTERNAL TRANSYM.I\TTER
CLOCK. This lead is used to pro-
vide the transmitting signal con-
verter with signal element timing
information.

25. Bell To DCE BUSY. This lead is used for testing
208A purposes by Telephone Company

type cir- personnel (non-EIA designated).
cuit

Source: Couch. L. W., Digital and Analog Comnnunication Svstetns, Macmillan Pub-
lishing Company, 1987, pp. 684-686

228

LIST OF REFERENCES

1. INTEL Corporation, BPK 5V75A Four-Megabit Bubble Memory Prototyping Kit

User's Manual, No. 2444-001, (undated).

2. Couch, Leon W., Digital and Analog Communication Systems, Macmillan Publishing

Company, 1987.

3. Wallin, J. W., MIicroprocessor Controller with Nonvolatile Memory Implementation,

MSEE Thesis, Naval Postgraduate School. Monterey, CA. December 1985.

4. 'GAS, Small Self-contained Payloads, Exrerimenter Handbook, National Aeronau-

tics and Space Administration, Goddard Space Flight Center. 1987.

5. Stehle. C. D., V"ibrauion Isolation of a Microphone, MS in Engineering Acoustics

Thesis, Naval Postgraduate School, Monterey. CA, September 1985.

6. Jordan, D. W., A Hatched Filter Algorithm for Acoustic Signal Detection, MSEE

Thesis, Naval Postgraduate School, Monterey, CA, June 1985.

7. Boyd, A. W., Kosinski. B. P., and Weston, R. L., "Autonomous Measurement of

Space Shuttle Payload Bay Acoustics During Launch," Naval Research Reviews,

Vol. 39, No. 1, pp. 9-17, 1987.

8. Frey, T. J., Jr., A 32-Bit Microprocessor Based Solid State Data Recorder for Space

Based Applications, MSEE Thesis, Naval Postgraduate School, Monterey, CA,

March 1986.

9. Kuebler, D. P., Signal Acquisition and Processing for Autonomous Space Shuttle

Cargo Bay Acoustic Mfeasurements, Defense Technical Information Center (DTIC)

Report No. ADA200426, Master's Thesis, Naval Postgraduate School, Monterey,

CA, June 1988.

229

10. National Semiconductor Corp., NSCSOO High-Petformance Low-Power .1ticro-

processor, July 1983.

11. National Semiconductor Corp., NSC8IOA RAM-;O-Timer, February 1984.

12. Ghausi, M. S., and Laker, K. R., Modern Filter Design, Prentice-Hall, Inc., 1981.

13. Micro-Cap III Electronic Circuit Analysis Program Instruction Manual, First Edi-

tion, Spectrum Software, 1988.

14. Jung, W. G., IC Op-.4mp Cookbook, Third Edition, pp. 236-237, Howard W. Sams

& Company. 1986.

15. S. Michael, Notes for EC4100 (Advanced Network Theory/. Naval Postgraduate

School, Monterey, CA, 19SS (unpublished).

16. Kernighan, B. W. and Ritchie, D. %.. The C Programming Language, Prentice-Hall,

Inc., 1978.

17. Software Development Systems, Inc., U.VII['4RE Software Development System,

Release 3.2. 1986.

18. Bilofskv, W., TOOLI'ORKS CSO. Version 3.1, The Software Toolworks. 1984.

19. National Semiconductor Corp., Linear Databook, 1982.

20. PCPP PC Personal Programmer User's Guide, Revision-002, Change 1, Intel Cor-

poration, 1987.

230

INITIAL DISTRIBUTION LIST
No. Copies

1. Defense Technical Information Center 2
Cameron Station

-' Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Commander
Naval Space Command
Attn: Code N3
Dahlgren. VA 22448

4. Commander
United States Space Command
Atn: Technical Library
Peterson AFB, CO 80914

5. Navy Space System Division
Chief of Naval Operations (OP-943)
Washington, DC 20305-2000

6. Department Chairman, Code 62
Dept. of Electrical and Computer Engineering
Naval Postgraduate School
Mlonterey. CA 93943-5000

7. Dr. Rudolf Panholzer
Chairman, Space Systems Academic Group
Co"-"
Naval Postgraduate School
Monterey, CA 93943

8. Mr. Larry Frazier
Naval Postgraduate School
Monterey CA 93943-5000

9. Dr. Sherif Michael
Dept. of Electrical and Computer Engineering
Code 62Mi
Naval Postgraduate School,
Monterey, CA 93943

231

10. National Aeronautics and Space Administration 2
Technical Library
NASA Headquarters
600 Independence Ave.
Washington, DC 20546

11. Mr. David Rigmaiden, Code 72
Space Systems Academic Group
Naval Postgraduate School
Monterey, CA 93943-5000

12. LT Charles B. Cameron, USN 2
1139 Leahy Rd.
Monterey, CA 93940-5318

13. Prof. Stcven Garrett, Code 61Gx 2
Dept. of Physics
Naval Postgraduate School
Monterey, CA 93943-5000

14. Prof. Tom Hofler, Code 61Hf
Dept. of' Physcis
Naval Postgraduate School
Monterey, CA 93943-5000

15. Space Projects Group, Code 72 3
Naval Postgraduate School
Monterey. CA 93943-5000

16. CDR Steven P. Hannifin USN
c o Carrier Airborne Early Warning Squadron 110
NAS Miramar, CA 92145-5000

17. CDR R. Braden. USN
c o Carrier Airborne Early Warning Squadron 110
NAS Miramar, CA 92145-5000

18. CPT R. Byrnes, USA
c,'o Code 39
Naval Postgraduate School
Monterey, CA 93943-5000

19. Research Administration (Code 012)
Naval Postgraduate School
Monterey, CA 93943

20. LT Stewart Cobb
SSD CLFPD
P. 0. Box 92960
LLAFB
Los Angeles, CA 90009-2960

232

21. Office of Naval Research
Physics Division - Code 1112
800 N. Quincy St.
Arlington, VA 22217

22. Commanding Officer
Naval Research Laboratory
Attn: E. Senasack (Code 8220)
,555 Overbrook Ave.,
Washington, DC 20375-5000

233

